
Flow Analysis for Verifying Properties of
Concurrent Software Systems

MATTHEW B. DWYER
University of Nebraska Lincoln
LORI A. CLARKE and JAMIESON M. COBLEIGH
University of Massachusetts Amherst
and
GLEB NAUMOVICH
Polytechnic University

This article describes FLAVERS, a finite-state verification approach that analyzes whether con-
current systems satisfy user-defined, behavioral properties. FLAVERS automatically creates a
compact, event-based model of the system that supports efficient dataflow analysis. FLAVERS
achieves this efficiency at the cost of precision. Analysts, however, can improve the precision of
analysis results by selectively and judiciously incorporating additional semantic information into
an analysis.

We report on an empirical study of the performance of the FLAVERS/Ada toolset applied to a
collection of multitasking Ada systems. This study indicates that sufficient precision for proving
system properties can usually be achieved and that the cost for such analysis typically grows as a
low-order polynomial in the size of the system.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program
Verification; D.1.3 [Programming Techniques]: Concurrent Programming—Parallel program-
ming

This work was partially supported by the National Science Foundation under Award Nos. CCR-
9703094, CCR-9708184, CCR-0093174, CCR-0205575, and CCR-0306607; an NSF/DOD Capacity
Building Grant, Contract F496200110243; the US Department of Defense/Army and the Defense
Advance Research Projects Agency under Contract DAAH0100CR231; the US Army Research Office
under Award Nos. DAAD190110564 and DAAD190310133; and IBM Faculty Partnership Awards.
Any opinions, findings, and conclusions or recommendations expressed in this article are those
of the authors and do not necessarily reflect the views of the National Science Foundation, the
Defense Advanced Research Projects Agency, the US Army Research Office, the US Department of
Defense, or IBM.
Authors’ addresses: M. B. Dwyer, Department of Computer Science and Engineering, 256 Avery
Hall, University of Nebraska, Lincoln, NE 68588-0115; email: dwyer@cse.unl.edu; L. A. Clarke and
J. M. Cobleigh, Computer Science Department, University of Massachusetts, 140 Governor’s Drive,
Amherst, MA 01003-9264; email: {clarke, jcobleig}@cs.umass.edu; G. Naumovich, Polytechnic Uni-
versity, 5 MetroTech Center, Brooklyn, NY 11201-3840; email: gleb@poly.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1049-331X/04/1000-0359 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004, Pages 359–430.

360 • M. B. Dwyer et al.

General Terms: Verification

Additional Key Words and Phrases: Dataflow analysis, finite-state verification, model checking

1. INTRODUCTION

Concurrency is commonly employed to help software systems meet demanding
performance or responsiveness requirements. Unfortunately, concurrency often
exacerbates the already difficult problem of validating software behavior. In this
article, we describe FLAVERS (FLow Analysis for VERification of Systems), an
approach that helps address this problem by verifying whether user-specified
properties are valid for all possible executions of a system.

The behavior of a concurrent system may depend on the order in which
instructions from different tasks are scheduled relative to one another. Two
runs of a system on identical inputs may produce different results if the order
of instruction execution differs for these two runs. Consequently, errors may
only manifest themselves under a few possible task schedules. To help detect
serious problems in concurrent systems, therefore, analysts need tools that can
exhaustively consider all possible task schedules and analyze the behavior of
the system on those schedules.

To address this concern, researchers have been developing a number of finite-
state verification approaches. These approaches typically compare a finite model
of a system to a property specification. Finite-state verification approaches are
not as general as theorem-proving-based verification approaches [Hoare 1969;
Dijkstra 1976] in terms of the kinds of properties that can be proved but, un-
like automated theorem provers, they are guaranteed to terminate and require
much less mathematical sophistication to use.

FLAVERS is a finite-state verification approach that uses dataflow analy-
sis techniques to verify event-based, behavioral properties of concurrent sys-
tems. With FLAVERS, analysts define a set of events that they wish to rea-
son about and specify properties of concurrent systems as patterns of those
events. FLAVERS then automatically creates a concise graph model of the sys-
tem that explicitly represents intertask communication, synchronization, and
event orderings, without enumerating the state space. At the core of FLAVERS
is a polynomial-time, conservative flow-analysis algorithm, which determines
whether the system satisfies a given property and, if not, provides example
traces through the model that violate that property.

As we demonstrate in this article, it is possible to perform reasonably effi-
cient analyses with FLAVERS. The utility of such analyses should be judged
not only by efficiency, but also by the precision of the results. To overcome the
traditional imprecision of dataflow analysis, we have developed an approach for
incrementally improving precision. With this approach, analysts can examine
previous analysis results, decide what information is needed to improve preci-
sion, and then introduce constraints that represent this information. Moreover,
automated support is provided for creating some common types of constraints.

FLAVERS is applicable to a wide range of concurrency models, as well as
sequential systems. In addition to analyzing software implementations, it can

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 361

be used to analyze high-level architectural descriptions or low-level designs,
as long as event-flow information is available. We have conducted a number
of case studies [Chamillard et al. 1996; Naumovich et al. 1996; Dwyer 1997;
Naumovich et al. 1997] and, in all cases, FLAVERS discovered the event-based
errors that were known to exist. In addition, in some cases, FLAVERS discov-
ered previously unknown errors. Industrial users have also reported finding
errors using FLAVERS. Many of those errors were simple and were discovered
in the process of formalizing properties. However, the more complicated er-
rors were found during verification [Bouwens et al. 1996; Science Applications
International Corporation 1997].

In this article, we discuss analysis of systems with explicit tasking and ren-
dezvous communication and illustrate our approach using concurrent Ada pro-
grams. A toolset, called FLAVERS/Ada, supports most of the constructs in Ada,
but as with most static concurrency analysis approaches, does not handle dy-
namic constructs, such as dynamic memory or task allocation. As is typical
for static approaches, the analyst must select a particular system configuration
when dealing with dynamic constructs. This and other limitations of FLAVERS
are discussed in the conclusion.

Other finite-state verification approaches have primarily focused on hard-
ware descriptions (e.g., McMillan [1993]) or system modeling notations
(e.g., Holzmann [1997]). Recently there has been considerable interest in ap-
plying finite-state verification to software [Ball and Rajamani 2001; Holzmann
2000; Visser et al. 2000]. Although promising, these reachability-based ap-
proaches are severely limited in the size of the systems that they can evaluate.
We believe that FLAVERS makes a number of contributions to flow-analysis
and concurrency-analysis research that address some of the limitations of these
approaches, including:

—a polynomial-time, dataflow analysis algorithm for proving user-specified
properties of a system,

—a concise, event-based model of concurrent systems that is automatically
derived from a system representation,

—an incremental process though which analyses of increasing precision can be
constructed, and

—a demonstration, through empirical evaluation, that flow analysis can be
effectively used to verify concurrent software systems.

Section 2 provides a brief, high-level overview of FLAVERS. Section 3 de-
scribes the property notations used by FLAVERS, and Section 4 provides a
detailed description of the system model. The state-propagation algorithm
and its attributes are given in Section 5, followed by a section that describes
how constraints are represented and how the flow-analysis algorithm is ex-
tended to handle constraints. After having described the FLAVERS analysis
approach, Section 7 presents some experimental results gathered from apply-
ing the FLAVERS/Ada toolset to the analysis of a collection of concurrent Ada
applications. Section 8 discusses related work, and Section 9 summarizes the

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

362 • M. B. Dwyer et al.

Fig. 1. Architecture of FLAVERS.

contributions of this approach and discusses limitations and directions for fu-
ture research.

2. OVERVIEW

With finite-state verification approaches, the analyst usually has to experiment
with several alternatives before finding an appropriate model of the system
that will lead to an effective analysis result. FLAVERS explicitly supports an
incremental approach to developing the system model. Using this approach,
the analyst provides the software system to be analyzed, the property to be
verified, and any initial constraints, such as environmental restrictions, that
the analyst knows should be respected. As shown in Figure 1, FLAVERS au-
tomatically translates the system, property, and constraints into appropriate
internal representations, and then employs state propagation, a dataflow anal-
ysis technique, to determine if the system, as restricted by the constraints, is
consistent with the property.

The analysis may return conclusive results, indicating that the property is
consistent with the system. Alternatively, the analysis may return inconclusive
results; this can happen because a fault in the system (or in the property)
causes some executable behavior to be inconsistent with the property or because
the analysis is too imprecise. FLAVERS generates counterexamples when the
analysis returns an inconclusive result. These counterexamples are examined
by the analyst and, if a fault is apparent, it can be fixed and the analysis
can be rerun. In cases where the fault is not obvious or where imprecision in
the model is the cause of the inconclusive analysis result, incorporating further
constraints can be helpful. This last step of incorporating additional constraints
can be performed multiple times, thereby providing an incremental approach
for increasing precision.

2.1 Specifying Properties

FLAVERS supports the verification of event-based properties. When specifying
properties, analysts may wish to reason about the execution of a system from a
variety of perspectives. For example, if analysts are interested in determining
whether some statement in a system uses a variable whose value is uninitial-
ized, then the events of interest are the definitions and uses of that variable.
Or, if analysts are interested in determining that whenever a read or write
operation on a file is called, the file has been opened and will subsequently be

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 363

closed, then the events of interest correspond to file operations. To address these
kinds of variations in focus, analysts define a set of events of interest, where an
event is an observable, indivisible system action. Indivisibility of events is de-
fined with respect to other events. Thus, computation of a complex expression
or even a subprogram could be defined as a single event, if it is not possible
for intervening events to occur. A set of events used in a FLAVERS analysis is
referred to as an alphabet and denoted by �.

FLAVERS allows analysts to specify properties that describe either desirable
or undesirable event sequences, since it is sometimes more convenient to de-
scribe a violation of a requirement than to describe the requirement itself. With
FLAVERS, analysts can represent a property as a quantified regular expression
(QRE) [Olender and Osterweil 1990] or as a finite-state automaton (FSA). From
such a description the toolset constructs a property automaton that compactly
represents the set of event sequences.

2.2 Modeling System Executions

To reason about the set of possible system executions, we need a semantically
well-founded model of those executions. This model need not represent all the
details of the executions, but it must contain sufficient information to support
the desired conservative analyses. FLAVERS builds a trace-flow graph (TFG)
model that compactly represents all sequences of events that correspond to
potential system executions for the events of interest. As shown in Figure 1,
the events of interest are obtained from both the property and constraints and
determine the alphabet for the analysis problem. Each task in the system to
be analyzed is first translated into an annotated control-flow graph (CFG), and
then refined based on this alphabet to form a refined CFG (RCFG). After alpha-
bet refinement, the RCFGs are combined to form the TFG. The TFG is optimized
so that each node in the TFG represents important flow of control information,
the execution of some event of interest, or both. The TFG conservatively approx-
imates the executable sequences of events, but may also include some infeasible
sequences, sequences that occur in the model but do not correspond to any actual
executions of the system.

2.3 State-Propagation Analysis

FLAVERS casts the question of whether system behavior is consistent with a
property as a state-propagation, flow-analysis problem [Olender and Osterweil
1992]. We have adapted this approach to apply to concurrent systems and have
extended it to incorporate constraints. Conceptually, a sequence of events as-
sociated with a path in the TFG would determine a sequence of transitions in
the property automaton. The state-propagation algorithm determines all the
property states that could be associated with a node in the TFG for all possi-
ble paths to that node. This dataflow analysis algorithm avoids enumerating
all potential sequences of system events by collapsing them into equivalence
classes. The result is an analysis that computes a conservative answer to the
analysis question and whose complexity is polynomial in the number of TFG
nodes. Conclusive analysis results provide the same assurance as any other

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

364 • M. B. Dwyer et al.

formal verification method. Inconclusive analysis results provide information
about the source of the faults or about imprecision in the system model. It
is important to note that FLAVERS may produce conclusive analysis results
even when some infeasible sequences remain in the model. Constraints are only
necessary when there are infeasible sequences that cause the property to be vi-
olated; elimination of these sequences leads to conclusive results if the actual
system does not violate the property.

3. SPECIFYING SYSTEM BEHAVIOR

Finite-state verification compares a model of a system’s executable behavior to
a specification of its intended behavior. Although it may be possible to specify
the intended behavior of a system completely using very expressive formalisms,
such as Z [Spivey 1992], the resulting specifications may be as difficult to con-
struct and reason about as the implementation itself. Furthermore, there are no
effective means to automate the checking of such specifications against an im-
plementation. In contrast, for finite-state verification, analysts typically write
small specifications that capture focused system properties. This eases the bur-
den on the specifier and allows the analysis, in turn, to be tailored to each prop-
erty. For a property to be verified by FLAVERS, it must either be expressed
directly as, or translated into, a deterministic FSA. This formalism enables
FLAVERS to check event-based properties on finite executions.1 FLAVERS sup-
ports both a QRE textual specification and a diagrammatic representation of a
quantified FSA.

A QRE consists of an alphabet, a quantifier, and the regular expression to
be satisfied. Figure 2 gives the formal syntax for the QRE notation used in
FLAVERS. The QRE alphabet contains events that may be used in the regular
expression. The meaning of each event symbol is established by the mapping to
the appropriate system action, where an occurrence of the symbol represents
the execution of the associated action in the system, as described in Section 4.

Quantifiers are included as a convenience. It is often conceptually simpler for
an analyst to describe a violation of a property than to describe all of the legal
behaviors. The no quantifier indicates that no event sequence corresponding to
an execution of the system should lie in the language of the specified regular
expression; properties using this quantifier specify undesirable behaviors. The
all quantifier indicates that all event sequences corresponding to executions
of the system should lie in the language of the specified regular expression;
properties using this quantifier specify desirable behaviors. Since regular ex-
pressions are closed under complement, the expressive power of all properties
and no properties are equivalent.

The show clause of a QRE is a statement of the property to be proved and
consists of a quantifier and a regular expression defined over the specified al-
phabet. These regular expressions have the standard meaning given in detail
in Olender and Osterweil [1990]. Note that “.” is used to refer to any event in
the alphabet, “∼” is set complement, “;” is the concatenation operator, “^pos” is

1FLAVERS has also been extended to support properties on infinite executions using an extended
specification notation [Naumovich and Clarke 2000]. We do not cover this extension in this article.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 365

Fig. 2. QRE syntax.

used to represent a positive number of repetitions, and “?” means zero or one
repetitions.

As an example of a QRE, consider a desirable property of any automated
teller machine (ATM) stating that “a valid PIN must be entered before a trans-
action can take place.” Assume the events are valid and invalid, to indicate
when a valid or invalid PIN is entered, respectively, and transaction, to indi-
cate when a transaction takes place. The property could then be written as:

for events {valid, invalid, transaction}
show all executions satisfy invalid*; (valid; transaction?)?

which states that any number of invalid PINs may be entered, but a transaction
cannot take place until after a valid PIN is entered. For simplicity, this property
only deals with the entry of PINs with respect to a single transaction, thus
no events from the alphabet of the property are allowed after the transaction
takes place. A variety of other properties specified using QREs are described in
Section 7.

FLAVERS also provides support for analysts to directly construct an au-
tomaton representation of the property. This form of a property consists of an
alphabet and a quantifier, both identical to those used in QREs, and a graphical
depiction of the FSA. As is the usual convention, the start state has an incoming

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

366 • M. B. Dwyer et al.

Fig. 3. FSA of the ATM property.

arrow with no source and accept states are represented by concentric circles.
The automaton form for the above ATM property is illustrated in Figure 3.

The property, whether specified with a QRE or FSA, is translated into a prop-
erty automaton, an equivalent, canonical form that is a minimal, deterministic,
and total FSA. By total we mean that each state must indicate an outgoing
transition for each event in the alphabet. Making an automaton total is done
by adding transitions for each missing event from a state to the trap state, a
nonaccepting state with only self-loop outgoing transitions. The trap state and
the transitions leading to it are shown in gray in all pictures of property au-
tomata. Standard algorithms are used to make the representation minimal and
deterministic [Aho et al. 1986]. Note that there exist expressions for which this
translation requires time exponential in the size of the expression but, in our
experience, QRE properties tend to be small, and so this cost tends to be small
compared to the total cost of a FLAVERS analysis. The canonical representation
that we use is not required, but simplifies the dataflow algorithm.

Definition 3.1. A property automaton is a deterministic FSA
(�, S, δ, A, s, strap), where:

� is the alphabet of the property,
S = {s0, s1, . . . , sk} is the set of property automaton states that represent

equivalence classes of strings over �,
δ : S × � → S is the total state transition function,
A ⊆ S is the set of accepting states,
s ∈ S is the unique start state, and
strap ∈ S is the unique trap state.
We use L(P) to denote the set of all strings accepted by a property automa-

ton P . QREs and their corresponding automata representations are able to
succinctly express a wide variety of commonly occurring behavioral properties
used in finite-state verification [Dwyer et al. 1999].

4. TRACE-FLOW GRAPH MODEL OF SYSTEM EXECUTION

We are interested in reasoning about sequences of events that can occur dur-
ing execution. Therefore, it is important that our model of the system be
a conservative representation of all the possible sequences of these events
that could actually occur. A program may manipulate data that can range
over an infinite or very large set of values, however. Thus, in practice, the

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 367

Fig. 4. Ada tasks for the ATM example.

precise execution behavior of a system cannot be efficiently captured by a
finite-state model. Instead, our finite-state model abstracts some system be-
haviors, while remaining conservative. This model is constructed in a way
that preserves all the relevant event sequences, but may not model all the
possible values of variables. Therefore, it is possible that additional event se-
quences may be represented. If this occurs, the analysis will be conservative,
but may return spurious results. In Section 6, we describe a mechanism by
which users can refine the precision of the model, based on the knowledge they
have obtained from past analyses. Thus, in considering the trade-off between
creating a model that could produce conclusive results, but will often be too
large to support cost-effective analyses, and one that will usually be tractable,
but may lead to inconclusive results, we err on the side of the smaller model.
In this section, we describe the TFG model, demonstrate that this model is
easy to construct, and show that it supports conservative state-propagation
analysis.

To illustrate the model, we use the small, concurrent Ada program shown in
Figure 4. In Ada, a system consists of a set of threads of control, called tasks, that
may run in parallel. The basic construct for communication and synchronization
between tasks is the rendezvous, a form of synchronous communication. A task
may call on a named entry in another task; execution of the calling task is then
blocked until the called task accepts the call and the two tasks complete the
rendezvous, possibly passing information in both directions. A call that has
not yet been accepted is pending. A task declaring a particular entry e may
accept a pending call from another task on that entry by executing an accept e
statement. If no calls on this entry are pending, the accepting task is blocked
until a call on entry e is made by another task. Both the calling task and the
accepting task continue execution after their rendezvous is completed.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

368 • M. B. Dwyer et al.

In Figure 4, the system contains two tasks, customer and atm, that simulate
the operation of an ATM. The customer begins by inserting a card, which is
represented by the entry call atm.insert card. After a rendezvous with the
ATM, the customer enters the PIN, represented by the entry call atm.enter pin.
After this rendezvous, the customer is notified by the ATM whether the PIN
is valid, invalid, or, in the case where there have been too many invalid PIN
entries, that the card is invalid and will be “eaten” by the machine. If the
PIN is found to be valid, then the customer can perform a transaction and
remove the card from the machine. In this example, validPIN represents a
function call that contains no events of interest and thus is treated as an atomic
action.2

4.1 Trace-Flow Graph Construction

A TFG captures all potential event orderings that might occur during execution
of the system. The TFG consists of:

—a collection of RCFGs, one for each task in the system,
—additional nodes and edges to represent intertask synchronization and com-

munication actions, and
—additional edges to represent intertask event orderings.

We consider each TFG component, in turn, and build up the definition of a TFG
in three steps.

4.1.1 Refined Control-Flow Graphs. The RCFG is derived from a typical
CFG model [Aho et al. 1986], which we assume is a conservative approximation
of the possible sequences of statements that a task could execute [Marlowe and
Ryder 1990]. In this section, we define CFGs whose nodes are labeled with
events, and then introduce a procedure for converting them into RCFGs.

Definition 4.1. A CFG G is a labeled directed graph (N , ninitial, nfinal,
E, label), where:

N is the set of CFG nodes,
ninitial ∈ N is the unique initial node of G,
nfinal ∈ N is the unique final node of G,
E ⊆ N × N is the set of directed edges, and
label : N → �S ∪ {τ } is a labeling function that maps a node to its associated

event, where �S is the set of all events for a given system and τ is a special,
“empty” event.

Tasks can call subprograms, which can in turn call other subprograms. We
inline the subprogram’s CFG for each called subprogram.3 Although, in the
worst case, this inlining can result in an explosive growth in the size of the

2To save space, we do not show the PIN parameter, since it is not needed in the subsequent analyses.
3The assumption that inlining is performed before construction of RCFGs is made only for simplicity
of the presentation. In our implementation, inlining is performed after CFGs are refined. FLAVERS
does not currently treat recursive subprograms, although techniques for replacing tail recursion
with iteration could be incorporated.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 369

Fig. 5. CFGs for the tasks in Figure 4.

graph, we have found that typically this growth is modest when combined with
CFG alphabet refinement, described below, since this refinement tends to re-
move the vast majority of nodes. This significant reduction is not evident in the
small example given here, but is illustrated for larger examples in Section 7.

For expediency, an analyst might choose to form a CFG for a set of analyses.
Thus, not all events in the system alphabet �S may be needed for a given
FLAVERS analysis. Let �I ⊆ �S represent the actual set of events of interest.
This set would contain at least all the events in the property. Also, note that
CFGs are affected by the granularity of system events. For example, where the
canonical procedure for creating CFGs creates a node corresponding to a basic
block [Aho et al. 1986], our procedure for creating annotated CFGs may create
multiple nodes for a basic block, where each node corresponds to a single event
in this block. At present, the FLAVERS/Ada toolset recognizes some types of
events automatically, such as task communications, but other types of events
are indicated by the use of stylized comments placed in the source code.

A CFG conservatively represents each sequence of system events that may be
observed on an execution of a task, with at least one path exhibiting precisely
the same sequence of events. Figure 5 shows CFGs for the two tasks from
Figure 4. For clarity, the nodes of the CFGs are labeled with system events that
represent their associated source statement.

Since a rendezvous can only occur in a concurrent system and CFGs are
representations of sequential code, the call and accept parts of a rendezvous are
each represented by events. These constituent parts are later replaced by the
appropriate rendezvous event during the construction of the TFG. Let �C ⊆ �S
contain the set of all intertask communication events, the labels that correspond
to either entry calls or accept statements.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

370 • M. B. Dwyer et al.

Fig. 6. CFG alphabet-refinement algorithm.

We want the model of the system to be as small as possible, yet still
be conservative. We therefore transform each CFG into a RCFG, using an
alphabet-refinement algorithm that eliminates any nodes that are not labeled
with an event from �I, the events of interest, �C, the intertask communi-
cation events, or ninitial and nfinal, the initial and final nodes. The alphabet-
refinement algorithm4 is given in Figure 6. This algorithm also relabels with
τ the initial and final nodes of the RCFG, unless they are labeled with an
event from �I ∪ �C. Thus, after this algorithm terminates, each node in
the RCFG is labeled with τ , or with an event from �I ∪ �C. Note there
is a weak bisimulation relationship [Milner 1989] between a CFG and its
RCFG.

To refine the CFGs in Figure 5 to be employed in the verification of the
property in Figure 3, the following alphabets are used:

�I = {invalid, valid, transaction}
�C = {atm.insert card, atm.enter PIN, accept valid, accept invalid,

accept eat card, atm.transaction, accept insert card, accept
enter PIN, customer.valid, accept transaction, customer.eat card,
customer.invalid}.

The resulting RCFGs are shown in Figure 7. Note that, in this example, none
of the events in �I occur on any of the nodes of the CFGs or RCFGs since these
events correspond to rendezvous events. These events are added to nodes of the
TFG when the TFG is created.

4In our implementation of this algorithm we do not remove a node if its removal would increase
the number of edges in the RCFG. For example, a node with three predecessors and two successors
would not be removed because after this node and its adjacent five edges are removed, six new
edges would have to be added to the RCFG.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 371

Fig. 7. RCFGs, for the CFGs in Figure 5, refined for the alphabet of the property in Figure 3.

To define the safety of RCFGs, we introduce the projection operator σ |S′ ,
which takes a sequence σ = s0, s1, . . . , sn of elements defined over a domain,
si ∈ S, and a subset of that domain, S′ ⊆ S, and returns a sequence σ ′ =
sj0 , sj1 , . . . , sjm that retains only those elements in σ that are in S′, meaning
si ∈ S′ ⇐⇒ (∃ jk | jk = i). Furthermore, the order of elements in the projected
sequence is preserved, meaning jk < jk+1.

We define a path through a CFG and other graphs as starting at the ini-
tial node, but not necessarily reaching the final node. Formally, we say that
a sequence of nodes n0, . . . , nk is a path through graph G if n0 = nG

initial and
∀i, 1 ≤ i ≤ k, (ni−1, ni) ∈ EG .

THEOREM 4.2 (RCFG CONSERVATIVENESS). Let G be a CFG and G ′ the corre-
sponding RCFG obtained using the alphabet-refinement algorithm. Let R ⊆ N G

be the set of nodes of G that were retained in G ′. For any sequence of nodes
π ∈ (N G)∗, let Map(π) ∈ (N G ′

)∗ be the sequence of nodes in G ′ that corresponds
to the nodes in the projection π |R. If π is a path in G, then Map(π) is a path in G ′.

PROOF. The proof of this theorem appears in Appendix A.1.

Once the RCFGs are formed for all the tasks in the system, the first step of
the TFG construction is to include the nodes and edges from these RCFGs. We
say that these nodes and edges are local to their respective RCFG, and thus
distinguish the local nodes and edges from the communication nodes and edges
that are added by the next step to represent intertask communication. We refer
to the set of edges that connect TFG nodes that correspond to nodes in the same
RCFG as Elocal.

4.1.2 Task Synchronization. The TFG models all potential synchro-
nization actions by adding a communication node between two matching

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

372 • M. B. Dwyer et al.

synchronous interactions. A communication node, c, is created for each pair of
local nodes, n and m, from different RCFGs, Gi and G j : n ∈ N Gi , m ∈ N G j , i �=
j , where n and m are labeled with events that represent matching communica-
tion statements (i.e., one is labeled with an accept statement, and the other is
labeled with an entry call on the same rendezvous). An edge to c is created from
each of n and m. In addition, each edge from Elocal from n or m to a local node s
is replaced by an edge from c to s. If the label on n is not in �I, we relabel node
n with τ ; a similar relabeling is done on node m. If the rendezvous corresponds
to an event e in �I, node c is labeled with e, otherwise it is labeled τ . Since
a communication node c represents a synchronization between two tasks, we
consider node c to be part of both tasks involved in the rendezvous. We use Ncom
to denote the set of communication nodes in the TFG and Ecom to denote the set
of control edges that connect communication nodes to other nodes in the TFG.

In addition to communication nodes, we also create a unique initial node
and a unique final node for the TFG. The initial node of the TFG represents the
synchronization of tasks at the start of execution. It does not have incoming
edges, but has edges to the initial nodes of each of the task RCFGs. The final
node of the TFG represents termination of the system execution. An edge is
created from the final node of each task’s RCFG to the final node of the TFG.
The final node of the TFG has no outgoing edges.

Figure 8 shows the TFG for the example in Figure 4. In this TFG represen-
tation, communication nodes are shown as diamonds and the initial and final
nodes are shown as triangles. For example, RCFG nodes 13 and 4 in Figure 7
represent a call on entry valid and an accept of this entry, respectively. As
shown in Figure 8, node 24 is the communication node that is constructed to
represent the task interaction on entry valid. Since this rendezvous event is in
�I, it is labeled valid. Node 21 represents the rendezvous insert card, which is
labeled τ since insert card is not in �I. Note that, unlike in the RCFG for task
Customer in Figure 7, local nodes 1 and 2 are no longer connected by a control
edge. This represents the fact that control in task Customer can flow from node
1 to node 2 only after completion of the task synchronization represented by
the communication node 21.

Different types of task interactions require different patterns of communica-
tion nodes. For example, Ada accept statements may have bodies that consist
of executable code. When an entry call is accepted by such an accept statement,
the calling task blocks, while the accept body is executed. To represent such
interactions, we need two communication nodes, one to represent the start of
the entry call and the other to represent the end of that call.

4.1.3 Task Interleavings. The TFG must explicitly represent all possible
orderings of events that could occur in concurrently executing tasks. These or-
derings must be considered during the FLAVERS analysis, and so we add edges
(m, n) to the TFG to represent the possibility that execution of code correspond-
ing to node m may immediately precede (MIP) execution of code corresponding
to node n, where m and n belong to disjoint sets of tasks. Note that we assume
an interleaving model of concurrent execution, which means that if two events
a and b in the system may happen in parallel, both sequences ab and ba must be

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 373

Fig. 8. TFG, for the example in Figure 4, using the RCFGs in Figure 7.

represented in the model. In Figure 8, MIP edges are shown as dashed arrows
(a bidirectional dashed arrow connecting two nodes m and n represents two
MIP edges, (m, n) and (n, m)). We denote the set of all MIP edges of the TFG
by Emip.

A naı̈ve approach to computing MIP edges for a TFG is to create an edge for
all pairs of nodes m and n such that the sets of tasks of m and n are disjoint.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

374 • M. B. Dwyer et al.

Although the resulting set of edges would conservatively capture the MIP
relation, many of these MIP edges would connect nodes that, in reality, could not
immediately precede each other. For example, in the TFG in Figure 8, node 11
may not immediately precede node 1, because for task ATM to execute node 11, a
synchronization with task Customer on entry insert card must have happened
(node 21), which, in turn, requires that Customer completes the execution of
node 1. A spurious MIP edge, such as (11, 1), leads to imprecision in the analy-
sis, since it introduces paths in the graph that do not correspond to real system
executions. In addition, processing these extra edges increases analysis cost.

Although, in general, the problem of precisely determining which code re-
gions may immediately precede each other is undecidable, it is possible to com-
pute a conservative approximation efficiently. We compute a conservative ap-
proximation of the minimal set of necessary MIP edges by using the may happen
in parallel (MHP) analysis [Naumovich and Avrunin 1998]. The MHP analysis
uses a nonsymmetric dataflow analysis algorithm to compute a conservative
estimate of pairs of TFG nodes representing regions of code that may happen
in parallel with each other. The worst-case complexity of the MHP analysis is
cubic in the number of TFG nodes. Based on the MHP information and the task
interaction semantics, we compute a set of MIP edges.

4.2 Formalization of the TFG

We construct the TFG from the local nodes of each individual task RCFG with
additional communication, initial, and final nodes. The edges of the TFG pre-
serve the local control-flow edges that do not involve task synchronization, but
also include edges to represent task synchronization and interleaving explicitly.

Definition 4.3. Assume that a system is composed of k tasks, where each
task Ti has a RCFG (Ni, ni

initial, ni
final, Ei, labeli), where Ni is the set of nodes

and ni
initial and ni

final represent the unique initial and final node, respectively,
Ei ⊆ Ni × Ni is the set of edges, and labeli relates a node in Ni to an event in
�I or τ . A TFG is a labeled directed graph (N , ninitial, nfinal, E, �I, label) where:

N = {ninitial, nfinal} ∪ Ncom ∪ ⋃
1≤i≤k Ni is the set of TFG nodes, where Ncom is

the set of communication nodes,
ninitial is the unique initial node,
nfinal is the unique final node,
E = Ecom ∪ Emip ∪ E ′

local ∪ ⋃
1≤i≤k{(ninitial, ni

initial)} ∪ ⋃
1≤i≤k{(ni

final, nfinal)} is the
set of TFG edges, where Ecom is the set of edges between local nodes and
communication nodes, Emip is the set of edges representing the interleaving
among tasks, and E ′

local = ⋃
1≤i≤k(Ei \ Ri), where Ri is the set of RCFG

edges removed when adding communication nodes,
�I is the set of events of interest defined by the analyst, and
label : N → �I ∪ {τ } maps a TFG node to its associated event, where

label(n) =

labeli(n) if n ∈ Ni

e if n ∈ Ncom, e ∈ �I, and e is the event associated
with the rendezvous represented by n

τ otherwise.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 375

For the TFG, we define two functions to return the successor and predecessor
nodes for a given node n:

Preds(n) = {p | (p, n) ∈ E}
Succs(n) = {s | (n, s) ∈ E}.
A path in the TFG is assigned meaning via the concatenation of non-τ labels

on nodes in the path. Let � be the set of all paths through the TFG that start
with the initial node. We introduce function Labels : N ∗ → �I

∗, which maps a
sequence of nodes to a sequence of events in the set �I such that:

Labels(n0, n1, . . . , nk) = label(n0), label(n1), . . . , label(nk)|�I .

Informally, for a path π , Labels(π) is the sequence of events of interest on
the nodes in the path. We use L(G) to denote the set of all event sequences in
the TFG:

L(G) = {Labels(π) | π ∈ �}.
Let L(S) be the set of all prefixes of event sequences, projected on alphabet

�I, of all actual executions of the system S, still assuming an interleaving model
of concurrent execution.

THEOREM 4.4 (TFG CONSERVATIVENESS). For each actual execution of the sys-
tem S, the TFG contains a path, starting in the initial node, that exhibits
the same set of events projected on �I as this execution projected on �I. Thus,
L(S) ⊆ L(G).

PROOF. A formal proof of this theorem appears in Appendix A.2.

Note that the reverse of the statement of this theorem is not true. There
may exist paths in the TFG that do not correspond to actual executions of the
system. For example, in Figure 8, the path 20, 1, 21, 2 does not correspond to
an actual execution of the system, because the synchronization represented at
node 21 cannot happen until nodes 9 and 10, in task ATM, execute. We address
this source of imprecision through the use of constraints, described in Section 6.

THEOREM 4.5 (SIZE OF TFG). The number of nodes in a TFG, |N |, is O(S2),
where S is the sum of the number of nodes in the task RCFGs. The number of
edges in a TFG is O(S4).

PROOF. Let C be the number of entry call nodes and A the number of accept
statement nodes in the task RCFGs. The number of nodes in the TFG is O(S +
A∗C+2). This is the sum of the number of RCFG nodes, communication nodes,
and 2 for the initial and final nodes. In the worst case, if C ≈ A ≈ S/2, the
bound on |N | becomes O(S2).

A TFG has at most two directed edges between any pair of nodes. Therefore,
the number of TFG edges is, in the worst case, O(|N |2) = O(S4).

The product of the number of entry calls and accept statements is more
accurately computed on a per-entry basis, and then summed over the set of
entries; this value can be significantly less than the product of all entry call and
accept statements. In addition, communication statements are typically a small

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

376 • M. B. Dwyer et al.

percentage of the statements in a given system. Consequently, we have found
that the worst-case quadratic blow-up in the number of TFG nodes, compared to
the total number of RCFG nodes, is not common in practice. In the experimental
study reported here and in an experimental study of 159 mostly small Ada
programs [Naumovich and Avrunin 1998], it was found that the nodes labeled
with events from �I tend to be sparse in the graph and that the number of TFG
nodes tends to be linear in the number of RCFG nodes and, thus, linear in the
number of statements in the program.

THEOREM 4.6 (COMPLEXITY OF THE TFG CONSTRUCTION ALGORITHM). The time
required to construct a TFG from a collection of CFGs is O(S6), where S is
the sum of the number of nodes in the task RCFGs.

PROOF. The TFG construction consists of several steps. First, RCFGs are
constructed, which takes O(S2) time. Next, the initial, the final, and the com-
munication nodes and then the MIP edges are added. Since there are at most
O(S2) communication nodes, adding communication nodes takes O(S2) time.
MHP analysis is O(N 3), where N is the number of TFG nodes and, therefore,
is O(S6). The procedure for adding MIP edges is linear in the number of MHP
pairs, which is O(N 2) = O(S4). Thus, the complexity of constructing the TFG
is dominated by the complexity of the MHP analysis, which is O(S6).

In our experiments, the time to construct the TFG was at most cubic in the
size of the system, as described in Section 7.

4.3 Reducing the Size of the TFG

Clearly, the size of the TFG has a major impact on the cost of the analysis. CFG
refinement tends to reduce the size of the graph significantly. In addition, there
are several other optimizations that can be employed.

One such optimization is partial-order reduction, which may remove some of
the MIP edges from the graph, using an algorithm that takes into account
partial orders of events from different tasks [Naumovich et al. 1999]. This
algorithm is conservative in the sense that a MIP edge is only removed if
it can be shown that for each possible event sequence in the original TFG,
there is an event sequence in the reduced TFG that has an identical effect on
the property. Note that although the initial computation of MIP edges based
on the MHP analysis does not depend on the alphabet, this partial-order re-
duction does. In our evaluation of this optimization, the partial-order reduc-
tion, on average, removed 25% of the MIP edges and improved the analysis
time by about 20% on the examples where this optimization was applicable
[Naumovich et al. 1999].

We can use the MHP analysis to further reduce the size of the TFG since, in
some cases, it can determine that a communication node represents a synchro-
nization that can never happen. Let nodes m and n correspond to an entry call
and an accept on the same rendezvous. As described in Section 4.1.2, the TFG
construction algorithm creates a communication node c with m and n as prede-
cessors. A necessary condition for an intertask communication is the possibility
that the entry call and the accept statement execute simultaneously. Therefore,

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 377

if the MHP analysis determines that m and n may not happen in parallel, it
means that the rendezvous represented by c can never occur. We can remove
node c from the TFG. After removing all nonexecutable communication nodes
and their incident edges, we can do a pass through the TFG removing all the
nodes that cannot be reached using edges in E \ Emip.

We perform additional conservative structural optimizations during TFG
construction, but do not include them in the formal description since they com-
plicate the discussion about conservativeness and complexity bounds. The TFG
construction algorithm, as presented, may add unnecessary τ nodes to the TFG.
For example, in the TFG in Figure 8, node 9 was retained because it was the
initial node in the ATM task, and node 10 was retained because it corresponded
to an accept on the insert card rendezvous. Since nodes 9 and 10 are τ nodes,
they have no effect on the state of the property, and one of these nodes can be
removed from the TFG without changing the set of non-τ event sequences in
the TFG.

In addition, notice that node 22 has three successors in task Customer that
are τ nodes, nodes 4, 5, and 6. We can replace these three nodes by a single
node with an out-edge to every node that has an out-edge from node 4, 5, or 6. A
similar optimization could be made to collapse nodes 13, 16, and 17 into a single
node. Neither of these optimizations affect the set of non-τ event sequences
associated with a TFG.

Figure 9 shows the resulting TFG after applying these optimizations to the
TFG shown in Figure 8. In this TFG, node 10 has been removed; nodes 4, 5,
and 6 have been replaced with a single node, numbered 4; and nodes 13, 16,
and 17 have been replaced with a single node, numbered 13. There are some
additional annotations on the nodes that can be ignored for now.

5. STATE-PROPAGATION ANALYSIS

FLAVERS uses state propagation to compare the executable behavior of a sys-
tem with event sequences defined in a property. Howden [1986], and later
Olender and Osterweil [1992], developed state-propagation algorithms for
checking properties of sequential systems. Our work builds on these results.
Here, we extend the state-propagation analysis for sequential systems [Olender
and Osterweil 1992] to concurrent systems modeled as a TFG.

Let P = (�P , SP , δP , AP , sP , s P
trap) be a property automaton, and let G =

(N G , nG
initial, nG

final, EG , �G , labelG) be a TFG. Recall that L(P) is the language of
the property, the set of all event sequences accepted by P . Let L(Gterm) ⊆ L(G)
be the set of all event sequences found on paths that start at the initial node
of G and end at the final node of G. We check consistency between the prop-
erty and system by checking either language containment, L(Gterm) ⊆ L(P),
if the property specifies desirable behaviors, or empty language intersection,
L(Gterm) ∩ L(P) = ∅, if the property specifies undesirable behaviors of the
system.

Intuitively, the objective of state-propagation analysis is to check each path π

through the TFG against the property automaton P . If P represents desirable
behaviors of the system, then for each path π , the corresponding event sequence

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

378 • M. B. Dwyer et al.

Fig. 9. Optimized TFG, annotated with states obtained from state propagation of the property in
Figure 3.

Labels(π)|�P has to be accepting for P to hold for the TFG. If P represents
undesirable behaviors of the system, then for each TFG path π , the correspond-
ing event sequence Labels(π)|�P must not be accepting for P to hold. Since the
number of paths in a TFG may be infinite, we use dataflow analysis to collapse
paths into equivalence sets with respect to a property P .

We define state-propagation analysis as an instance of a dataflow framework
comprised of a semi-lattice of values and a set of functions defined over those
values [Hecht 1977]. The values in the analysis are organized as a join semi-
lattice LP over the power-set 2SP

of P ’s states. The bottom value ⊥ for this
lattice is ∅, and the top value � is SP . The join operation is set union, ∪, and
the ordering relation is subset, ⊆.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 379

For each node n in the TFG, we define a propagation function F n : 2SP → 2SP

that captures the effect that this node has on the property automaton:

∀n ∈ N G , ∀S ⊆ SP , F n(S) = {s′ ∈ SP | s ∈ S ∧ s′ = f P (n, s)},
where

f P (n, s) =
{

δP (s, labelG(n)) if labelG(n) ∈ �P

s if labelG(n) /∈ �P .

Given a flow graph that represents all executable sequences of system events,
we can instantiate a dataflow framework for it and be sure that its solution
contains a conservative set of property automaton states at each flow-graph
node [Marlowe and Ryder 1990]. Informally, this means that the set of states
associated with a particular node in the TFG includes all the property states
that could be reached along an event sequence corresponding to a path through
the TFG from the initial node up to that node. Since the TFG is a conservative
representation of all sequences of the events of interest that could occur during
execution, the states associated with each node are also a conservative repre-
sentation of all the property states that could be associated with the system
location that is represented by this node.

The solution at the final TFG node can be compared to the set of accepting
states of P . If P specifies desirable behaviors, it holds if the set of states com-
puted for the final node of the TFG contains only accepting states. If P specifies
undesirable behaviors, it holds if the set of states computed for the final node
of the TFG contains only nonaccepting states.

THEOREM 5.1 (STATE-PROPAGATION CONSERVATIVENESS). If state-propagation
analysis over a TFG determines that a property holds, then this property holds
for the actual system. Formally, for any TFG node n, if there exists an actual
program execution on which state r of the property is associated with n, then
after the state-propagation algorithm terminates, r ∈ States[n].

PROOF. This proof can be found in Appendix A.3.

Formulation of our analysis as a monotone dataflow framework provides
an algorithm for its solution. Unfortunately, a straightforward implementa-
tion of the dataflow framework as an instance of Hecht’s iterative worklist
algorithm [Hecht 1977] is not very efficient, as it has worst-case complexity of
O(|N G ||EG ||SP |2).

We can improve the worst-case complexity of the state-propagation algorithm
significantly by optimizing the propagation of states among the TFG nodes. In
particular, we would like to ensure that for any two nodes n and p, where
p ∈ Preds(n), if a state s is associated with node p, then n’s transition function
F n will be applied to s only once. We achieve this by associating two sets of
states with each TFG node, set States[n], which contains all states associated
with node n, and set IN[n], which contains all states that have been propagated
to n from n’s predecessors. On each iteration of the algorithm, we update both
sets for a single node n. For each predecessor p of n, we add to IN[n] only those
states from States[p] that have not been placed in States[n] on a prior iteration,

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

380 • M. B. Dwyer et al.

and apply the transition function of n to only those states, placing the resulting
states in States[n]. Figure 10 shows the FLAVERS state-propagation algorithm
incorporating this optimization.

THEOREM 5.2 (STATE-PROPAGATION COMPLEXITY). Given a TFG, with nodes N G,
and a property automaton, with states SP , the state-propagation algorithm ter-
minates in O(|SP ||N G |2) time.

PROOF. This proof is given in Appendix A.4

5.1 Examples

To illustrate the state-propagation algorithm, we use the optimized TFG in
Figure 9, and the property automaton in Figure 3. The result of state propaga-
tion is shown in Figure 9 by annotating each TFG node with the set of states
that would be associated with it at the end of state propagation.

State propagation begins by associating the start state of the property au-
tomaton, state 1, with the initial node of the TFG, node 20. The Flow sets of the
two out-edges of the initial node, (20, 1) and (20, 9), are initialized to the set con-
taining the start state of the property automaton, {1}. The successors of node 20,
nodes 1 and 9, are then added to the worklist. Suppose node 1 is removed from
the worklist first. State propagation next computes the set of property automa-
ton states that need to be propagated over node 1. This is the union of the Flow
sets of the in-edges to node 1, minus the property automaton states that have al-
ready reached node 1. This is (Flow[(20, 1)]∪Flow[(9, 1)])\IN[1] = ({1}∪∅)\∅ =
{1}. The IN set of node 1 is next updated to reflect this, so IN[1] = {1}. Since
the property automaton states associated with the in-edges of node 1 have been
processed, the Flow sets of these edges are reset to the empty set. Since node
1 is a τ node, propagating state 1 of the property automaton across it does not
change the state of the property automaton. Since state 1 is not in States[1],
state 1 needs to be propagated to the successors of node 1, so Flow[(1, 9)] = {1},
Flow[(1, 21)] = {1}, and nodes 9 and 21 are added to the worklist. Since state 1
has been processed on node 1, it is added to States[1], so States[1] = {1}.

Now, nodes 9 and 21 are on the worklist. Suppose node 9 is removed from the
worklist next. The processing of node 9 is similar to the processing of node 1, and
results in state 1 being associated with node 9, Flow[(9, 1)] = {1}, Flow[(9, 21)] =
{1}, and nodes 1 and 21 being added to the worklist. When node 1 gets removed
from the worklist, the set of states that needs to be propagated over node 1 will
be computed again, which is (Flow[(20, 1)] ∪ Flow[(9, 1)]) \ IN[1] = (∅ ∪ {1}) \
{1} = ∅, meaning no new states need to be propagated over node 1. Thus, the
use of Flow sets has prevented state propagation from processing states that
have already been processed on a node.

At this point, only node 21 is on the worklist. State propagation will process
nodes 21, 2, 11, 22, 4, and 13, in a manner similar to the processing of nodes 1
and 9, and will associate state 1 with each of these nodes. After processing
node 4 (and 13), state 24 will be on the worklist, with Flow[(4, 24)] = {1} and
Flow[(13, 24)] = {1}. This results in state 1 being propagated over node 24.
Since node 24 is labeled with valid, which causes the property automaton

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 381

Fig. 10. State-propagation algorithm.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

382 • M. B. Dwyer et al.

Fig. 11. Property stating that a card is eaten only after an invalid PIN has been entered two times
in a row.

to transition from state 1 to state 2, state 2 will be added to Flow[(24, 7)],
Flow[(24, 15)], and States[24]. State propagation will continue until a fixed
point is reached, at which time states 1 and 3 of the property automaton will
be in States[27]. Since node 27 is the final node of the TFG, the property being
checked is an all property, and states 1 and 3 are both accepting states of the
property automaton, FLAVERS would conclude that the property holds on all
executions.

Figure 11 shows an all property automaton stating that “the ATM will eat a
card only if an invalid PIN is entered two times in a row.” To check this property,
FLAVERS produces a new TFG that contains events relevant to this property.
This TFG, including the annotations that would result from state propagation,
is shown in Figure 12.

In this case, state propagation reports an inconclusive result. This is because
nonaccepting state 4 of the property automaton in Figure 11 has been propa-
gated to the final node, node 27. FLAVERS would then present the user with
a counterexample path through this TFG, for example 20, 9, 21, 11, 22, 13,
26, 19, 27. This path corresponds to the event sequence eat card. This path is
spurious, because along this path the variable count is first set to 0, and then
the true branch of the statement if(count=2) is taken. This occurs because
the value of the variable count has not been modeled in the analysis. In the
next section, we describe how to model variables when they are deemed to be
important to the analysis.

Although not shown here, FLAVERS provides support for selecting short
paths that violate the property [Tan et al. 2004] and for visualizing paths.
Path visualization is particularly important when dealing with medium-size or
larger sequential programs, or concurrent programs of just about any size.

6. CONSTRAINTS

FLAVERS, like all practical flow-analysis approaches, is based on abstractions
of system control and data information that are encoded into the analysis. The
term sensitivity is often used to describe whether a kind of information is (par-
tially) preserved by the abstractions used in a flow analysis. Flow-sensitive
and context-sensitive analyses honor, respectively, the sequencing of state-
ments and proper nesting of procedure invocations during system execution.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 383

Fig. 12. TFG, for the example in Figure 4, refined for alphabet {valid, invalid, eat card} and
annotated with states obtained from state propagation of the property in Figure 11.

Synchronization-sensitive analyses honor the semantics of synchronization
statements during execution of a concurrent system [Ramalingam 2000]. Path-
sensitive analyses improve on flow-sensitive analyses by incorporating some
path-feasibility information. Typically, path sensitivity is achieved by defin-
ing a value-sensitive analysis that captures partial information about program
variables (e.g., Holley and Rosen [1981]). Increased sensitivity in an analysis
leads to increased precision in analysis results. Unfortunately, enforcing even
a few forms of sensitivity, such as flow, context, and synchronization sensitivity,
throughout the program in a single analysis makes most interesting analysis
problems undecidable [Ramalingam 2000]. The key to efficient and effective
flow analysis is in targeting the sensitivity of the analysis to parts of the pro-
gram that are related to the analysis question.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

384 • M. B. Dwyer et al.

Figure 12 illustrates the need for increased sensitivity in a FLAVERS analy-
sis. For the example program, a property that is concerned with the number of
times an invalid PIN has been entered would need to monitor the possible val-
ues of variable count. The CFG, and consequently the RCFG and TFG, would
normally not include such information. As a result, if the state-propagation
analysis determines that a property is violated, it is possible that the violation
occurs only on infeasible paths. Since excessive spurious violations hinder us-
ability of a tool such as FLAVERS, it is important to develop techniques for
improving the analysis precision without sacrificing too much efficiency.

In this section, we describe a flexible mechanism for enforcing different forms
of sensitivity in a FLAVERS analysis. FLAVERS allows information that is not
explicitly represented in the TFG to be added to an analysis in the form of
constraints. Constraints are selectively introduced in situations where it is de-
termined that the analysis results are too imprecise without this additional
information. If a constraint is determined to be violated along some TFG path,
then the effect of that path on the analysis is discarded. Constraints can en-
code information, such as statement sequencing, variable values, and branch
decisions, that can be used to remove infeasible paths and, thus, to increase the
sensitivity of a FLAVERS analysis.

In FLAVERS, constraints are represented as FSAs whose transitions are
based on events associated with TFG nodes. Each constraint has a single vi-
olation state that represents the fact that an event sequence leading to that
state is inconsistent with the constraint. Intuitively, if on a path through the
TFG a constraint automaton enters a violation state, this path is recognized
as spurious and removed from consideration. Similar to the state-propagation
analysis defined for property automata in Section 5, we define a combined state-
propagation analysis to form a qualified flow analysis [Holley and Rosen 1981].

Definition 6.1. A constraint automaton is a deterministic FSA
(�, S, δ, A, s, v), where:

� is the alphabet of the constraint,
S is the set of states that represent equivalence classes of strings over �,
δ : S × � → S is the total state transition function,
A ⊆ S is the set of accepting states,
s ∈ S is the unique start state, and
v ∈ S is the unique violation state.
There are several different types of constraints, including variable, task,

environmental, and interface. Since constraints can be added for a subset of
program features (e.g., a subset of program variables), FLAVERS provides the
ability to define partially sensitive flow analyses that are optimized to retain
only the information that is necessary to achieve a desired level of precision.
Possible FLAVERS analyses range from an unconstrained analysis, which is
flow insensitive due to the fact that MIP edges introduce intertask paths that
violate control flow within a task, to a fully task and variable constrained anal-
ysis, which is flow, synchronization, scalar-value, and path sensitive.

Although variable and task automata are the only kinds of constraints for
which FLAVERS currently provides automated support, the concept is very

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 385

general. A wide range of finite-state abstractions could be encoded as con-
straints and incorporated into FLAVERS using state-propagation analysis. We
discuss this further in Section 8. User interaction profiles [Bouwens et al. 1996],
models of the networking environment [Naumovich et al. 1996], and models
of the software environment [Dwyer 1997] have each been incorporated into
FLAVERS analyses using constraints.

In the remainder of this section, we describe variable automaton constraints
and task automaton constraints in more detail. We then discuss our technique
for combining multiple constraints into a single analysis.

6.1 Variable Automaton Constraints

Flow graphs do not typically model system variables. For many systems, how-
ever, accurate analysis depends on modeling some data values. As the example
in Figure 12 illustrates, we are often interested in modeling variables that are
used in conditional statements or in guards that control task communication
statements. Many of these variables are defined over small finite domains and
modified in a disciplined way. Examples include Boolean variables to which only
constant values are assigned and bounded integer counter variables to which
only increment and decrement operations are applied. A variable automaton
(VA) is a type of constraint that encodes information about the value of a vari-
able. VA transitions represent modifications to the values of the variables and
the results of conditional tests of the values of those variables.

To reduce imprecision when checking the property in Figure 12, we build a
VA for the counter variable count, as shown in Figure 13. In this VA, selected
operations on a variable are interpreted precisely, for example, assignment of
the constant zero and increment and decrement operations for values between
zero and two. All other operations are safely abstracted to the situation where
the variable’s value is nonzero or unknown. Assigning zero to the value of the
variable is represented by the event count=0. If the value to be assigned can-
not be statically determined or is outside the range of values represented by
the VA, then this is represented by the event count=unknown. Conditional re-
sults are represented by the possible outcomes (is count=0, is count!=0, and
is count>1). There are transitions to the violation state when the result of a
conditional is inconsistent with the value of the variable described by the VA
state. For example, the test is count=0 is false if the value of count is known
to be 1, so there is a transition from 1 to the violation state on this event. The
self-transition out of the violation state is labeled with a * to indicate that this
transition is labeled with every possible event in the alphabet. The structure
for other counter VAs is similar, although each will vary in size depending on
the range of permissible values.

To use this VA, events modeling the behavior of count need to be added to the
TFG, as shown in Figure 14. In this TFG, node 9 represents the initialization
of variable count to 0, node 18 represents the increment of this variable, and
nodes 14a and 14b represent the comparison of this variable to 2. Nodes 14a and
14b ensure that the true branch (false branch) is taken only when the condition
is true (false).

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

386 • M. B. Dwyer et al.

Fig. 13. VA for variable count.

Consider the path 20, 9, 21, 11, 22, 14a, 26, 19, 27 in the TFG in Figure 14 that
corresponds to the infeasible path in the TFG in Figure 12 that we considered
earlier. This path corresponds to the sequence of events count=0, is count=2,
eat card. The subsequence count=0, is count=2 that contains events from the
alphabet of the VA for count causes this VA to enter its violation state, which
means that this path is infeasible, and, as explained in Section 6.3, this path
will be discarded by FLAVERS during state propagation using this VA.

To enforce the conditions encoded in a VA during state propagation, the TFG
alphabet must include the events in the VA alphabet and the TFG must be
extended to identify system statements that cause variable state transitions.
In many cases this could be done automatically, although the FLAVERS/Ada
toolset currently requires that the events associated with a VA be added through
the use of stylized comments in the source code, as mentioned previously.

The FLAVERS toolset allows users to select a VA definition, then automati-
cally specializes that definition for a specific variable by instantiating a generic
VA template and replacing the variable names in the template with the sys-
tem variable name. Counter, enumerated, and Boolean VAs are constructed in

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 387

Fig. 14. TFG, for the example in Figure 4, refined for alphabet {invalid, valid, eat card, count=0,
count inc, is count=2, is count!=2}.

O(k2) steps, where k is the number of different possible values the variable can
assume.

6.2 Task Automaton Constraints

Although MIP edges in the TFG are used to model the possible interleaving
of events from different tasks succinctly, they have the negative side-effect of
introducing paths that may violate event orderings that are encoded as control-
flow edges in the TFG. For example, in Figure 14 the analysis may propagate
dataflow information through the TFG nodes in the following order: 20, 9, 21, 2,
18, 2, 18, 11, 22, 14a, 26, 19, 27. This path violates the control flow in task ATM
in several ways, for example, node 18 appears on this path before node 23 does,
although the control flow through task ATM indicates that node 23 must precede
node 18. Therefore, this path is infeasible and its removal would improve the

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

388 • M. B. Dwyer et al.

Fig. 15. TA for task ATM, built for the TFG in Figure 14. (For the violation state, all incoming
transitions, except for those coming from the start state, are omitted.)

analysis precision, since the property in Figure 11 is violated on this path. Note
that the VA for variable count is not violated on this path.

Infeasible paths that violate the control flow of a task are removed by encod-
ing the control flow of that task as an FSA, called a task automaton (TA). During
state propagation, this TA constrains the analysis to consider only those TFG
paths that include events from that task in an order that is consistent with its
intratask control flow.

To construct the TA for a task, we build the node-edge dual of the task’s
subflow-graph. Although we could build this from the RCFG directly, we use
the TFG so any refinements that may have been applied to the TFG will be
reflected in the task’s subflow-graph as well.

We use function Tasks to return a set of tasks to which a TFG node belongs.
For any local node, Tasks returns a set containing a single task and for any com-
munication node, Tasks returns a set containing two tasks whose rendezvous is
represented by this communication node. A TA is constructed for task Ti from
the subflow-graph of the TFG with the set of nodes {n | n ∈ N ∧ Ti ∈ Tasks(n)}
and the set of edges in this subflow-graph that are incident upon these nodes.
The initial and final nodes of the subflow-graph determine the start and accept
states of the TA, respectively.

Figure 15 shows the TA for task ATM from the TFG in Figure 14. Each transi-
tion in this TA corresponds to executing code represented by a TFG node, and
each state represents the task state before or after such execution. For clarity,
we only show those transitions to the violation state that leave the start state
of this automaton. For any node from task ATM, there is a transition based on
this node from every state in the TA. All of the transitions that are not shown
lead to the violation state.

Consider again the TFG path 20, 9, 21, 2, 18, 2, 18, 11, 22, 14a, 26, 19, 27.
Since this path leads to the violation state of the TA in Figure 15 (specifically,
a transition to the violation state is taken after transitions based on nodes 9,
21, and 18 are taken), FLAVERS will ignore this infeasible path during state
propagation.

Note that, as described here, the definition of TAs is different from that of
property automata and VAs in that the transitions in the TAs are based on
the identities of TFG nodes instead of the labels of these nodes. Conceptually,
we can label the TFG nodes with these unique node identifiers to be able to
use the previously defined FSA model. In our implementation of FLAVERS, we
redefine all FSA transitions in terms of TFG node identifiers for efficiency.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 389

Construction of a TA requires O(|Ni|2) steps, where Ni ∈ N is the set of
nodes in Ti. In the worst case, the subflow-graph for the task is fully-connected,
therefore, we need to construct Ni transitions for each of the Ni states of the TA.
Thus the entire algorithm is O(|Ni|2). Constructing TAs is very fast in practice.

6.3 Combining the Property and Constraints in the State-propagation Analysis

To incorporate constraints into FLAVERS analyses, the state-propagation anal-
ysis is solved in conjunction with the analyses for each constraint. One obvious
way to combine flow analyses for the property and all constraints is to form
the product of the property and constraint automata, unifying all of the viola-
tion states, and then propagate states of this product automaton through the
TFG. Here, we describe a more efficient approach that forms reachable product
automata states on-the-fly [Naumovich et al. 1998].

Let P = (�P , SP , δP , AP , sP , sP
trap) be the property automaton and

∀i, 1 ≤ i ≤ k, Ci = (�Ci , SCi , δCi , ACi , sCi , vCi) be the constraint automata
used by the analysis. To handle these automata simultaneously, we define
tuples of length k + 1 that are associated with TFG nodes and represent the
values of the property and constraints in these nodes. Formally, a tuple T is a
collection of one state from each automaton in the problem:

T = (t P , tC1 , tC2 , . . . , tCk), where t P ∈ SP and ∀i : 1 ≤ i ≤ k, tCi ∈ SCi .

Let Tuples be the set of all possible tuples:

Tuples =
{

(t P , tC1 , tC2 , . . . , tCk) | t P ∈ SP ∧
k∧

i=1

(tCi ∈ SCi)

}
.

The initial tuple is the tuple T0 = (sP , sC1 , sC2 , . . . , sCk).
We associate a function f n over tuples with each TFG node n:

∀T = (t P , tC1 , tC2 , . . . , tCk) ∈ Tuples : f n(T) = (t P , tC1 , tC2 , . . . , tCk),

where

t P =
{

δP (t P , label(n)) if label(n) ∈ �P

t P if label(n) �∈ �P

∀1 ≤ i ≤ k, tCi =
{

δCi (tCi , label(n)) if label(n) ∈ �Ci

tCi if label(n) �∈ �Ci
.

As in the state-propagation algorithm for property automata in Section 5, we
generalize f n to a function F n over sets of tuples for each TFG node, making
sure that tuples containing violation states of constraints are not produced. For
every n ∈ N and for every X ⊆ Tuples, we define F n(X) as follows:

F n(X) =
{

f n(T) = f n(t P , tC1 , tC2 , . . . , tCk) | T ∈ X ∧
k∧

i=1

(tCi �= vCi)

}
.

The lattice elements for this dataflow problem are sets of tuples, and the join
operation is set union. Once the solution of the dataflow problem over the TFG

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

390 • M. B. Dwyer et al.

converges to a fixed point, we look only at the final node of the TFG to determine
whether the property holds. For each tuple associated with nfinal, we check the
constraint automata states to see whether all of these are accepting states. If
any constraint automaton is left in a nonaccepting state, we remove the entire
tuple from nfinal. We then look at the property states on the remaining tuples
as was done in the state-propagation algorithm in Figure 10.

This tuple-based propagation approach is reminiscent of K-tuple frameworks
from Masticola et al. [1995]. An important distinction is that each component
of a tuple in K-tuple frameworks corresponds to a special kind of edge in the
graph. In our approach, an event associated with a TFG node can be present in
alphabets of several automata, and thus components of tuples are not directly
tied to disjoint sets of information in the flow graph.

The proof of conservativeness of state-propagation analysis using constraints
appears in Appendix A.3.

THEOREM 6.2 (STATE-PROPAGATION COMPLEXITY WITH CONSTRAINTS). Given a
TFG G with nodes N G, a property automaton P with states SP , and constraint
automata C1, . . . , Ck with states SC1 , . . . , SCk , state propagation using the tuple-
based approach has worst-case complexity that is O(|SP ||SC1 | · · · |SCk ||N G |2).

PROOF. This is proved in Naumovich et al. [1998]. Intuitively, if the property
automaton and constraint automata are treated as FSAs, their cross-product
could be computed, yielding a single FSA with at most |SP | · |SC1 | · · · |SCk |
states. This FSA could be modified into a property automaton and used in
the state-propagation algorithm from Figure 10, with worst-case complexity
O(|SP ||SC1 | · · · |SCk ||N G |2).

Using the VA for count and the TA for the task ATM, FLAVERS will still report
that the property does not hold and present the analyst with a counterexam-
ple path. For inconclusive results, there are usually several counterexamples
that could be shown, and the order that these are generated in depends on how
the worklist is implemented in the state-propagation algorithm [Cobleigh et al.
2001]. For instance, FLAVERS might return the path 20, 1, 9, 21, 2, 11, 22, 4,
14b, 23, 2, 18, 11, 22, 4, 14b, 23, 2, 18, 11, 22, 4, 14a, 26, 8, 19, 27. This path
corresponds to the event sequence count=0, is count!=2, invalid, count inc,
is count!=2, invalid, count inc, is count=2, eat card and, indeed, is an ex-
ample of an executable path that violates the property. For this example, the
analyst would soon conclude that the property shown in Figure 11 does not
hold on this program because of an off-by-one error. In the program, the vari-
able count is initialized to zero and the card is eaten when the variable is equal
to two, which occurs after an invalid PIN has been entered three times. By
changing the if statement that corresponds to CFG node 14 in Figure 5 to read
if(count=1), then state propagation, using the VA for count and the TA for the
task ATM, reports that the property in Figure 11 holds.

Alternatively, the counterexample path 20, 9, 21, 11, 22, 14b, 23, 18, 11, 22,
14b, 23, 18, 11, 22, 14a, 26, 19, 27 might be generated. This path results in the
same event sequence, but is infeasible because it does not follow the control
flow of task Customer. Often when observing an infeasible counterexample, the

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 391

analyst’s attention is directed close enough to the source of the problem that the
fault is still discovered. When this is not the case, the source of the infeasibility
can be used to help select a constraint that will eliminate this infeasible path
from further consideration. For the infeasible counterexample given above, the
analyst would add a TA for task Customer.

7. EVALUATION OF FLAVERS

The complexity bounds of FLAVERS are polynomial in the number of program
statements, but exponential in the number of constraints. These are worst-case
bounds, however, and do not indicate the expected cost of analysis on typical
applications. To develop an understanding of the feasibility of FLAVERS, we
applied it to the analysis of a variety of problems, where a problem consists
of a program, property, and set of constraints. In this section, we describe our
methodology for applying FLAVERS to a set of problems, present the results of
our empirical evaluation, and discuss a number of observations.

7.1 Methodology

Our empirical evaluation was performed using an implementation of FLAVERS
that is targeted for Ada tasking programs. The FLAVERS/Ada toolset has been
programmed in three different languages. The tools that construct CFGs from
the Ada source code of the program being analyzed are built on top of Arcadia
infrastructure components [Taylor et al. 1988] and are written in Ada. Tools
written in Java convert these CFGs into a TFG and construct the constraint and
property automata that are needed. Finally, the MHP and state-propagation
analyses are written in C for efficiency.

We evaluated four scalable Ada tasking programs. Three of these, the Read-
ers/Writers, Gas Station, and several variants of the Dining Philosopher pro-
gram, have been used frequently as examples in the concurrency analysis liter-
ature (e.g., Avrunin et al. [1991]; Chamillard et al. [1996]; Corbett and Avrunin
[1994]; Duri et al. [1993]; Dwyer [1995]; Masticola and Ryder [1993]; Young
et al. [1995]). They were selected because they represent variations on topolo-
gies and synchronization structures that appear to be commonly used in concur-
rent programs. Readers/Writers and Gas Station represent variations on cen-
tralized resource management strategies, and the different Dining Philosopher
programs represent different approaches to distributed resource management
strategies. In addition, for each of these programs, correctness properties are
easily identified. The fourth example, the Chiron program, is derived from a
real system [Keller et al. 1991] and has been used as an example for compar-
ing finite-state verification approaches [Avrunin et al. 1999]. For the Chiron
program, we developed several of our own properties by reverse engineering
the program. The goal was to come up with properties that developers would
actually want to check for this program.

Since the version of FLAVERS/Ada that we used is designed to work with
programs that terminate, the code for some of these programs needed to be
modified slightly to ensure this. Additionally, to make use of VAs and to spec-
ify some properties, we included stylized comments in the source code, as

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

392 • M. B. Dwyer et al.

previously described, to indicate the relevant events to be associated with the
source statements. The source code for all these programs can be found at
http://laser.cs.umass.edu/verification-examples/.

These programs can be scaled by replicating some of the tasks. As is typi-
cally the case with finite-state verification techniques, properties involving such
tasks are stated in terms of only some of these tasks, such as customer 1 and
customer 2. Informal arguments are then made that if the property holds for
an arbitrary selection of such tasks, it would hold for any such selection.

There are two important concerns in this evaluation: cost and precision. For
evaluating the former, we consider the cost of constructing the analysis artifacts
as well as the cost of performing the analysis. To isolate concerns about cost
from concerns about precision, we chose properties that are known to be valid
for the selected programs and measured only the performance of the analyses
that yielded conclusive results.

For evaluating precision, we report on the constraints that were included
to achieve a conclusive result. To find this set of constraints, we first tried to
verify each property without any constraints. If the result was inconclusive, we
examined the counterexample path returned by FLAVERS and added one or
more constraints to remove the infeasible counterexample path from consider-
ation and repeated the verification. We needed to repeat this process a small
number of times, almost always less than three, to find a set of constraints suf-
ficient for proving each property conclusively. Once we were able to prove each
property conclusively, we began removing constraints until we found a minimal
set of constraints, in the sense that removing one of the constraints from this
minimal set would result in an inconclusive analysis result. The resulting set
is not necessarily an optimal solution, where optimal means that it took the
least amount of execution time (or space) to produce conclusive results. A more
rigorous approach would be needed to determine the optimal set, since adding a
constraint may reduce the execution time (or space). So even after a set of con-
straints sufficient to obtain conclusive results is found, additional constraints
would need to be considered to determine an optimal set. Our goal was not to
find the best performance, but to determine if there is a reasonable process that
analysts might follow to find a minimal set of constraints. In following such a
process, analysts would most likely not add additional constraints after finding
a set that produced conclusive results.

To gain a sense of how the analysis would scale as the size of the system
increases, we attempted to scale programs up to 200 replications. Note that
each replication may involve adding one or more tasks to the system. For ex-
ample, for the Dining Philosopher program both a philosopher and a fork must
be added for each replication. Before scaling a program, we first considered a
small, yet reasonable, instantiation of that program and then found a minimal
configuration of constraints that led to conclusive results. We then used this
configuration as we scaled the size of the program. Of course, there is no guar-
antee that this configuration will continue to produce conclusive results for a
property (or the correspondingly scaled version of a property) when a program
is scaled to a larger size. This was the case, however, for almost all the programs
and properties that we considered; exceptions are noted below.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 393

Although these experiments give the cost of running FLAVERS on a sys-
tem with a minimal set of constraints, they do not give any indication of the
analyst’s time, including the time to develop the properties, to examine coun-
terexamples to determine if they are feasible or infeasible, and to determine
which constraints should be added to remove infeasible paths from consider-
ation. Such an evaluation is beyond the scope of this article, but we provide
anecdotal evidence when discussing the results of the evaluation.

Our primary measure of analysis time is the sum of user and system time
as measured by /usr/bin/time on a Sun Enterprise 3500 with two 336MHz
processors and 2GB of memory, running Solaris 2.6. Although this is a multi-
user system, for all experiments we had exclusive access to the machine to
reduce variance in the times. The Ada components of the FLAVERS/Ada tools
were compiled using the Verdix Ada Development System version 6.2.3c, with
optimizations disabled (to avoid known compiler bugs). The Java components
were run using the Sun JDK version 1.3.0, with HotSpot. The C components
were compiled with the Free Software Foundation’s gcc version 2.95.2, using
the -O2 flag for optimization.

When computing the execution time, we do not include the time for perform-
ing language processing, which would include syntactic and semantic analysis
and the creation of an abstract syntax tree and annotated CFG. In our toolset,
language processing is built upon an obsolete frontend and is not representative
of expected frontend costs. Moreover, these costs are well understood and not
of interest here. We include the cost of TFG construction, alphabet refinement,
partial-order reduction, and state propagation.

To estimate the actual functional dependence between execution time and
the size of the program, we fit both polynomial and exponential curves to the
timing data. To evaluate the fit, we look at the mean square residuals, MSRes,
which is the amount of variability not explained by the model per-degree-of-
freedom. When comparing fits, a smaller value for MSRes represents a better
fit. We also give the mean square regression, MSReg, which is the amount of
variability explained by the model per-degree-of-freedom. MSReg is used to show
the difference in scale between it and MSRes. In our examples, MSReg is often
orders of magnitude larger than MSRes, indicating that the curves we are fitting
to the data explain a large amount of the variance in the data. We supplement
the fit data with plots that compare the fit data with the actual data.

To evaluate the space costs, we consider the size of the analysis artifacts
compared to the size of the program. In our evaluation, LOC gives the number of
lines of code for the Ada program, not counting blank lines and lines that contain
only comments; Nodes and Edges are the number of nodes and edges of the TFG;
Tuples is the number of different tuples created during state propagation; and
Node-Tuples is the sum, over all nodes in the TFG, of the number of tuples
associated with each node. Since the number of node-tuples corresponds to
the number of states FLAVERS explored while performing state propagation,
determining how the number of node-tuples grows with respect to program
size gives a good indication of how memory usage by FLAVERS scales with
respect to program size. To estimate the functional dependence between space
and program size, we fit curves to the different size measure data.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

394 • M. B. Dwyer et al.

The evaluation described here provides valuable insight into the FLAVERS
approach. Since the sample size is small and not known to be representative,
however, we do not claim that the results can be generalized to all Ada tasking
programs.

7.2 Detailed Empirical Results

In this subsection, we describe each program and then discuss each property
considered, the constraints used to produce conclusive results, and any inter-
esting issues that arose. For each program, we then evaluate the performance
of FLAVERS. The complete size and timing data for these evaluations are pre-
sented in Appendix B and Appendix C, respectively.

7.2.1 The Readers/Writers Program. The Readers/Writers program is a
standard example that implements a means of thread-safe access to shared
data. This program consists of a central data server, called the controller task,
and a collection of reader and writer client tasks. It is scalable in the num-
ber of client tasks. In the program, readers only attempt to read and writ-
ers only attempt to write the shared data. The controller, however, can sup-
port clients that both read and write. The controller enforces exclusive-write
semantics; if a writer is active, then no other writer or reader can be ac-
tive. These semantics are encoded using local variables WriterPresent and
ActiveReaders.

The state space of this program grows exponentially with the number of client
tasks, where a state of the program records the states of the controller, readers,
and writers. To evaluate how the cost of the FLAVERS analysis scales for this
program, we began with two readers and two writers, and then increased the
size of the program up to 200 readers and 200 writers. Assuming that a client
task can only be in one of two states, there are 2r+w reachable states for this
program, where r is the number of readers, and w is the number of writers.
Thus, if we can demonstrate polynomial growth for accurate analysis, we will
have improved on naı̈ve reachability analysis.

We specify properties in terms of the events rw.control.start write,
rw.control.stop write, rw.control.start read, and rw.control.stop read,
which are the fully-qualified Ada names of the controller entries, correspond-
ing to a writer task starting and stopping writing and a reader task starting and
stopping reading, respectively. We use the abbreviations wstart, wstop, rstart,
and rstop, respectively, to make the QREs more readable.

Exclusive Read Write Property. The Exclusive Read Write Property checks
that when a writer is active, no other reader or writer can become active. The
QRE for this property is:

for events {wstart, wstop, rstart, rstop}
show all executions satisfy
(~[wstart]*; wstart; ~[wstart, rstart, wstop]*; wstop)*;
(wstart; ~[wstart, rstart, wstop]*)?

The first line of the regular expression portion of the QRE states that between
the time a writer starts writing and the time it stops, no other writer or reader

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 395

can start. Note that in this property we explicitly list all the events that cannot
occur after a writer starts, instead of just listing the one event that could occur,
namely rstop. We prefer this style since the regular expression portion does
not have to be changed if additional events are added to the property alphabet,
as often happens when adding VA constraints. The second line represents the
case where a writer starts writing and does not stop. Although this is behavior
that would be unexpected in the example, we are trying to capture the most
general form of the property. This property was proved conclusively using two
constraints: a TA for the controller and a VA for the Boolean WriterPresent
variable that keeps track of whether a writer task is currently writing. We
used FLAVERS to prove this property for versions of this example with up to
200 readers and 200 writers. The analysis of the largest version required 29
seconds.

No Write While Reading Property. Although the exclusive read write prop-
erty excludes the possibility of a write or a read being initiated while a writer
is active, it does not preclude a reader from being active when a writer starts. A
separate property can be used to check for this. Since multiple readers can be
active simultaneously, this property needs to count the number of active read-
ers. As a result, this property needs to be scaled with the number of readers.
For the 2 readers case, the QRE for this property is:

for events {wstart, rstart, rstop}
show all executions satisfy
(
(rstart;
(rstart; rstop)*;

rstop)*;
wstart*)*

For the 3 readers case, the QRE for this property is:

for events {wstart, rstart, rstop}
show all executions satisfy
(
(rstart;
(rstart;
(rstart; rstop)*;

rstop)*;
rstop)*;

wstart*)*

This QRE keeps track of the number of readers that have started but not yet
stopped and ensures that a writer can only start while there are no active read-
ers. To prove this property conclusively, FLAVERS needed 2 constraints, a TA
for the controller and a VA for the integer counter variable ActiveReaders that
keeps track of the number of active readers. Since the variable ActiveReaders
can grow up to the number of readers in the example, the size of this automaton
needs to be scaled with the size of the program. FLAVERS was able to prove

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

396 • M. B. Dwyer et al.

Fig. 16. no write while reading comparison.

that this property holds with 200 readers and 200 writers, but it required 6,901
seconds, a significant increase over the cost of proving the exclusive read
write property, which did not require the property or constraints to scale as
the program size was scaled.

We can take advantage of variable ActiveReaders to derive the following
alternative expression of the property, no write while reading 2. The QRE
for this property ensures that a write can only start when the value of the
variable ActiveReaders is zero:

for events {r=0, is_r=0, r_inc, r_dec, wstart}
show all executions satisfy
(~[wstart, r=0, is_r=0] |
([r=0, is_r=0]; ([r=0, is_r=0] | wstart)*;
~[wstart, r=0, is_r=0])

)*; ([r=0, is_r=0]; ([r=0, is_r=0] | wstart)*)?

In this QRE, r=0 represents an assignment of 0 to the variable
ActiveReaders, is r=0 represents a check that the value is 0, r inc and r dec
represent the incrementing and decrementing of this variable. In the program,
these are the only events that access or change the value of ActiveReaders.
The property checks that either r=0 or is r=0 must precede a writer starting
without an intervening change in the variable’s value. This property does con-
sider some event sequences as violations that are legal, for example, r=0, r inc,
r dec, wstart. Still, if this property is conclusive, then we can conclude that no
writer can start while a reader is reading. To prove this property conclusively,
FLAVERS only needed a TA for the controller and proved this property on an
example with 200 readers and 200 writers in about 30 seconds. Figure 16 shows
the timing comparisons of the two formulations of this property.

Write First Property. Another property we consider is that data must be
in the buffer before a read is attempted. The QRE for this property, write

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 397

Fig. 17. Reader/Writer total times.

first, is:

for events {wstart, rstart} show all executions satisfy
(~[wstart, rstart]*; wstart; .*) | ~[rstart]*

The first clause of the regular expression ensures that a reader does not
start until after a writer starts. The second clause says that if no writer starts
throughout a program run, then no reader can start on this run. To prove this
property conclusively FLAVERS used a TA for the controller and was able to
handle an example with 200 readers and 200 writers in about 33 seconds.

Performance. Figure 17 shows execution time versus the number of readers
in the example for all of the properties except for no write while reading,
which was shown in Figure 16.

To estimate the actual functional dependence between execution time and
the number of readers and writers, we fit different curves to the time needed
to verify the four properties. Since no write while reading required signifi-
cantly more time than the others, we only provide data for this property. The
results of these fittings are shown in Table I. Each column gives the data for the
coefficients of the best-fit curve of the given form.5 As is expected, for the three
polynomial fits MSRes decreases as the degree of the polynomial increases. Note,
MSRes for the exponential line is larger than MSRes for the cubic polynomial.
When comparing fits, a smaller value for MSRes represents a better fit. One
thing that is important to notice in this and all future tables is that the mean
squared residuals are orders of magnitude smaller than the mean squared re-
gressions, meaning the curves we are attempting to fit to the data do a good job
of explaining the data. Figure 18 plots the cubic polynomial against the expo-
nential, and the cubic fit looks quite accurate, as expected from the fit data.

5We also looked at curves of the form ec1x , but in all cases this curve was a very poor fit so we do
not include it here.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

398 • M. B. Dwyer et al.

Table I. Curve Fitting for no write while reading

c1n + c0 c2n2 + c1n + c0 c3n3 + c2x2 + c1n + c0 ec0+c1n

MSRes 8.9763 * 105 4.7369 * 104 1.5484 * 103 3.2612 * 104

MSReg 1.3452 * 108 8.6837 * 107 5.8579 * 107 1.3043 * 108

c0 −9.1272 * 102 2.7825 * 102 −6.3646 4.3524
c1 2.6152 * 101 −2.4050 * 101 2.4618 0.0227
c2 2.7208 * 10−1 −9.3607 * 10−2

c3 1.2660 * 10−3

Fig. 18. Fit comparison for no write while reading.

For property no write while reading, Table II gives the size information
for some of the artifacts created during the analysis, for a sampling of program
sizes. For this property, the numbers in these columns fit exactly to a polyno-
mial, as shown in the last row of Table II. The growth of the number of lines of
code, nodes, and edges is linear in the number of readers, whereas the growth of
the number of tuples and node-tuples is quadratic. The fact that the number of
node-tuples grows quadratically is particularly important because the number
of node-tuples corresponds closely with the amount of memory used for running
an analysis. Thus, FLAVERS is showing polynomial growth both in terms of
space and time on this property.

7.2.2 The Gas Station Program. The Gas Station program is a simulation
of an automated self-serve gas station [Helmbold and Luckham 1985]. The gas
station consists of a collection of server tasks, or pumps, an operator task, and
a collection of client tasks, or customers. It is similar to the Readers/Writers
program in that both have a server with client tasks. In the Readers/
Writers program, the server is the control task. In the Gas Station program, the
server is a scalable collection of cooperating tasks. Thus, the Gas Station pro-
gram is scalable in two different dimensions, size of the server and number of
clients.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 399

Table II. Size Information for no write while reading

Readers LOC Nodes Edges Tuples Node-Tuples

1 75 25 50 16 47
50 1,153 711 1,912 7,905 23,959

100 2,253 1,411 3,812 30,805 92,909
150 3,353 2,111 5,712 68,705 206,859
200 4,453 2,811 7,612 121,605 365,809

n 22n + 53 14n + 11 38n + 12 3n2 + 8n + 5 9n2 + 29n + 9

The server subsystem consists of an operator task that accepts payments
and gives change to customers, and a number of pump tasks that independently
start and stop the pumping of gas. The operator interacts with the pumps by
enabling them to pump gas after payment has been received and by getting
information about how much gas was pumped. The client tasks pay for gas,
pump it, and get their change. Instead of an explicit queue to represent the
clients that are waiting to pump gas, the customers block on a rendezvous until
the pump is available.

We looked at programs with 1, 2, and 3 pumps and attempted to scale the
number of customers, up to 200, for all properties. We did not look at sys-
tems with more than 4 pumps because, as mentioned, the language processing
tools are built on an obsolete frontend and the cost for running them became
onerous.

Mutual Exclusion Property. The Gas Station program should only allow one
customer to use a pump at a time. We check this property for customers 1
and 2, on pump 1. Since all the customer and pump tasks are identical and
none reference task ids, we argue that verifying this property for these spe-
cific customers and pump is equivalent to verifying it for any arbitrary pair
of customers and any particular pump. This property is specified in terms of
the events indicating that customers 1 and 2 start and stop pumping using
pump 1: cust 1 start pump 1, cust 1 stop pump 1, cust 2 start pump 1, and
cust 2 stop pump 1. We abbreviate these by c1 start, c1 stop, c2 start, and
c2 stop to make the QREs more readable. The QRE for the mutual exclusion
property is:

for events {c1_start, c2_start, c1_stop, c2_stop}
show all executions satisfy
((c1_start ; c1_stop) | (c2_start ; c2_stop))*

This QRE ensures that either customer 1 starts pumping and then stops
pumping, or customer 2 starts pumping and then stops pumping. To prove
this property, FLAVERS needs a TA for pump 1 and for each customer. Thus,
there are c + 1 constraints, where c is the number of customers. Because of
the number of constraints, the analysis of this property scaled very poorly. As
shown in Figure 19, FLAVERS could only prove this property on an example
with 1 pump and 7 customers, with 2 pumps and 5 customers, and with 3 pumps
and 4 customers; larger sizes ran out of memory.

As with the Reader/Writer program, we looked for an alternative way to
express this property. By focusing just on an individual customer and pump,

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

400 • M. B. Dwyer et al.

Fig. 19. mutual exclusion times.

Fig. 20. customer 1 start/stop times.

say customer 1 and pump 1, we can create two simpler properties customer
1 start/stop and pump 1 start/stop that can be used together to prove the
original mutual exclusion property.

The customer 1 start/stop property states that customer 1 starts pumping
and then stops pumping. The QRE for this is:

for events {c1_start, c1_stop} show all executions satisfy
(c1_start ; c1_stop)*

To prove this property conclusively, FLAVERS did not need any constraints.
FLAVERS was able to prove this property with 200 customers and 3 pumps
as shown in Figure 20. Since all customers tasks are identical, we can use the
proof that customer 1 obeys the customer 1 start/stop property to argue that
customer i also starts pumping and then stops pumping.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 401

Fig. 21. pump 1 start/stop times.

The QRE for the second property, pump 1 start/stop, is:

for events {c1_start, c2_start,..., cn_start,
c1_stop, c2_stop,..., cn_stop}

show all executions satisfy
([c1_start, c2_start,..., cn_start];
[c1_stop, c2_stop,..., cn_stop])*

This property states that a start event for some customer is always followed
by a stop event for some customer, although not necessarily the same customer.
To prove this property conclusively, FLAVERS needs a TA for pump 1. As shown
in Figure 21, FLAVERS proved this property on the gas station example with
3 pumps and 200 customers.

Now we need to show that proving these two properties is sufficient to
prove the mutual exclusion property. The alphabets of properties customer
1 start/stop, pump 1 start/stop, and mutual exclusion are not the same.
Note, however, that for any property, we can add an event to its alphabet and not
change its semantics by adding self-loop transitions for that new event to each
of the property states. Let PME represent the property mutual exclusion, PC1
the property customer 1 start/stop, PP1 the property pump 1 start/stop, and
PC2 the customer 2 start/stop property, all extended so that their alphabets
are the same.

Now, let ρ be a path that represents a feasible execution of the Gas Station
program. Since PC1, PC2, and PP1 were all proven conclusively, then ρ ∈ L(PC1),
ρ ∈ L(PC2), and ρ ∈ L(PP1). Therefore, ρ ∈ L(PC1)∩L(PC2)∩L(PP1). Now, it can
be shown that L(PC1) ∩ L(PC2) ∩ L(PP1) ⊆ L(PME). Thus, since every feasible
path is contained in the language of PME, we can conclude that the mutual
exclusion property holds for the Gas Station program.

Correct Change Property. Another desirable property is that if a customer
prepays on a given pump, then that customer receives the change for that

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

402 • M. B. Dwyer et al.

Fig. 22. correct change times.

Table III. Size Information for correct change with 3 Pumps

Customers LOC Nodes Edges Tuples Node-Tuples

1 197 76 140 187 567
2 316 131 738 2,638 30,946
5 673 296 5,268 25,117 1,395,485

10 1,268 571 21,938 112,892 12,494,400
15 1,863 846 50,008 263,667 43,692,665
20 2,458 1,121 89,478 477,442 105,385,280
25 3,053 1,396 140,348 754,217 207,967,245

n > 2 119n + 78 55n + 21 228n2+ 1260n2+ 13860n3 − 13813n2+
−86n − 2 −1345n + 342 1478n + 920

pump. The following QRE expresses this property for customer 1 and pump 1:

for events {c1_change_p1, c1_change_p2,..., c1_change_pn,
c1_prepay_p1}

show all executions satisfy
((c1_prepay_p1 ; c1_change_p1) |
[c1_change_p2,..., c1_change_pn])*

This QRE ensures that if customer 1 prepays on pump 1, then customer 1
receives change on pump 1. To prove the property conclusively, FLAVERS needs
TAs for the operator, customer 1, and pump 1. Figure 22 shows FLAVERS’
performance on this property. In this case, FLAVERS was only able to prove the
property with 2 pumps and 46 customers, and with 3 pumps and 25 customers;
with more customers FLAVERS ran out of memory. Table III shows the size
information for this property with 3 pumps.

Performance. Of the gas station properties where FLAVERS could handle
programs that scale to 200 customers, it takes the most time to verify the
pump 1 start/stop property, thus we show the curve fittings for this property.
Table IV shows the results of these fittings. With this property, MSRes is better

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 403

Table IV. Curve Fitting for pump 1 start/stop with 3 Pumps

c1n + c0 c2n2 + c1n + c0 c3n3 + c2n2 + c1n + c0 ec0+c1n

MSRes 5.9292 * 107 1.6652 * 106 5.4350 * 103 3.1968 * 106

MSReg 1.2483 * 1010 7.5678 * 109 5.0701 * 109 1.2010 * 1010

c0 −8.0699 * 103 1.7321 * 103 1.9707 * 101 7.0802
c1 2.5193 * 102 −1.6125 * 102 −1.7397 0.0201
c2 2.2393 3.9162 * 10−2

c3 7.6166 * 10−3

Fig. 23. Fit comparison for pump 1 start/stop with 3 pumps.

for the exponential curve than the linear polynomial, but the cubic fit is best,
as can also be seen in the plot shown in Figure 23.

Table V gives size information for a sampling of program sizes. For this
property, these sizes fit exactly to a polynomial, as shown in the last row of
the table, when the number of customers is 2 or more. For these problems, the
number of LOC, nodes, and tuples grew linearly with the number of customers,
and the number of edges and node-tuples grew quadratically.

There were two gas station properties where FLAVERS was not able to scale
up to 200 customers, the mutual exclusion property and the correct change
property. On the mutual exclusion property, the number of constraints needed
to be increased as the number of customers increased, resulting in FLAVERS
running out of memory. Unfortunately, there are not enough data points for this
property to do meaningful curve fitting. Still, by verifying three other proper-
ties, we were able to prove that the mutual exclusion property holds on a
system with 200 customers. For the correct change property, the number of
constraints did not need to be increased with the number of customers, but
FLAVERS was still unable to verify this property on a system with 200 cus-
tomers. In this case, the number of node-tuples grew as a cubic polynomial of
the number of customers, but the cubic coefficient was large, so the memory

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

404 • M. B. Dwyer et al.

Table V. Size Information for pump 1 start/stop with 3 Pumps

Customers LOC Nodes Edges Tuples Node-Tuples

1 197 76 136 10 292
2 316 131 878 17 1,580

50 6,028 2,771 669,518 353 761,180
100 11,978 5,521 2,689,018 703 3,027,330
150 17,928 8,271 6,058,518 1,053 6,798,480
200 23,878 11,021 10,778,018 1,403 12,074,630

n > 1 119n + 78 55n + 21 270n2 − 110n + 18 7n + 3 301n2 + 173n + 30

requirements grew quickly. We are unsure as to why the number of node-tuples
grew so quickly for the correct change property.

7.2.3 The Dining Philosophers Program. The Dining Philosophers pro-
gram consists of equal numbers of philosophers and forks. These are organized
into a ring with alternating philosopher and fork tasks. Each philosopher has
access to two forks, left and right, and thus each fork is shared by two philoso-
phers. A philosopher attempts to gain access to both of its incident forks. A
philosopher that has both forks will proceed to eat. Between the time a philoso-
pher puts down the forks and makes an attempt to pick up the forks again,
the philosopher is thinking. This program has a potential deadlock where each
philosopher has picked up the left (right) fork and is waiting for the right (left)
fork to become available.

We verified properties for four different versions of the Dining Philosopher
program: standard, dictionary, fork manager, and host. The standard version
prevents the potential deadlock by having each philosopher pick up the left fork,
and then the right fork, except for one philosopher, who reverses this order.
In the standard version, each philosopher and fork is a task, so a program
with n philosophers has 2n tasks. The dictionary version adds a token, the
dictionary, that prevents its holder from picking up a fork and so it also has 2n
tasks when there are n philosophers. When the left neighbor is thinking, the
philosopher can pass the dictionary to that neighbor. The fork manager version
uses a manager task to control access to the forks and ensures that philosophers
pick up both forks in an atomic action. In this version, the manager task controls
access to all of the forks, and so there is only one fork task, and thus n + 1
tasks when there are n philosphers. The host version uses a control task to
ensure that at most n − 1 philosophers can be attempting to pick up the forks
at the same time. In this version, each philosopher and each fork is a task, and
there is one additional task for the control task, and so the host version with
n philosophers has 2n + 1 tasks. We checked the dining philosopher properties
described below on each version of the Dining Philosopher program, scaling the
number of philosopher and fork tasks up to 200 each.

Mutual Exclusion Property. To check the property that “adjacent philoso-
phers cannot eat concurrently,” we need to choose two representative adjacent
philosophers, say philosophers 1 and 2. In the QRE representation of the prop-
erty, we use p1start and p1stop to represent the events of philosopher 1 starting
eating, and stopping eating and use p2start and p2stop for the same actions

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 405

Table VI. Constraints for the Dining Philosopher Programs

Example mutual exclusion no fork 1 up twice

Standard TA: phil 1, phil 2, fork 2 TA: fork 1
Fork Manager TA: manager, phil 1, phil 2; VA: fork 2 TA: manager

Dictionary TA: phil 1, phil 2, fork 2 TA: fork 1
Host TA: phil 1, phil 2, fork 2 TA: fork 1

Fig. 24. mutual exclusion total times.

of philosopher 2. The QRE for the mutual exclusion property is:

for events {p1start, p1stop, p2start, p2stop}
show all executions satisfy
((p1start ; p1stop) | (p2start ; p2stop))*

This QRE is similar to the mutual exclusion property for the Gas Station
program, in that it ensures that once philosopher 1 (or 2) starts eating, then
philosopher 2 (or 1) cannot eat. FLAVERS is able to prove this property on
all four versions of the Dining Philosopher program using the constraints
shown in Table VI. The times necessary to verify this property are shown in
Figure 24.

No Fork Up Twice Property. To check that a fork cannot be picked up twice in
a row without first being put down, we again need to represent this property in
terms of an arbitrary fork instance. The events up and down represent the fork
being picked up and put down, respectively. The QRE to check this property on
fork 1 is:

for events {up, down} show all executions satisfy
(~[up]*; up; ~[up,down]*; down)*; ~[up]*; (up; ~[up,down]*)?

The first clause of the regular expression part of this property ensures that
once an up for fork 1 occurs, no ups will be seen until a down for this fork
occurs. The last clause deals with the case where the execution might terminate
with an up that is not followed by a down. It ensures that two ups are not seen

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

406 • M. B. Dwyer et al.

Fig. 25. no fork up twice times.

Table VII. Curve Fitting for mutual exclusion on the Host Version

c1n + c0 c2n2 + c1n + c0 c3n3 + c2n2 + c1n + c0 ec0+c1n

MSRes 5.8657 * 103 5.038 5.069 1.8156 * 103

MSReg 3.4409 * 106 1.8523 * 106 1.2349 * 106 3.5543 * 106

c0 −1.0317 * 102 2.2300 2.6553 3.8761
c1 4.2639 2.5399 * 10−2 −1.1591 * 10−2 0.0152
c2 2.2734 * 10−2 2.3237 * 10−2

c3 −1.731 * 10−6

consecutively if this situation occurs. FLAVERS is able to prove this property
on all four versions using the constraints shown in Table VI. Figure 25 shows
FLAVERS’ performance on this set of problems.

Performance. Of the four versions of the Dining Philosopher program,
FLAVERS takes the most time to verify the mutual exclusion property on
the host version. Table VII shows the results of curve fitting for timing results
for this version. For this property, the quadratic appears to be the best fit, as
can be seen in the plot shown in Figure 26.

Table VIII gives the size information for a sampling of program sizes. For the
mutual exclusion property and a program with at least three philosophers,
these sizes fit exactly to a polynomial, as shown in the last row of the table.
For this property, the number of tuples was a constant; the number of LOC,
edges, and node-tuples grew linearly with the number of philosophers, and the
number of edges grew quadratically.

7.2.4 The Chiron Problem. Chiron is a user-interface framework developed
at the University of California at Irvine [Keller et al. 1991]. Since it was not
developed as an analysis test case, it may be more representative of “typical”
concurrent Ada programs than some of the other programs we considered.

In an instantiation of Chiron, there are one or more artist tasks that draw
on the screen. There are also a number of events, for example button pushes,

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 407

Fig. 26. Fit comparison for mutual exclusion on the Host version.

Table VIII. Size Information for mutual exclusion on the Host Version

Philosophers LOC Nodes Edges Tuples Node-Tuples

2 87 44 132 87 445
3 114 62 305 87 2,118

50 1,383 908 81,662 87 66,884
100 2,733 1,808 323,412 87 135,784
150 4,083 2,708 725,162 87 204,684
200 5,433 3,608 1,286,912 87 273,584

n > 2 27n + 33 18n + 8 32n2 + 35n − 88 87 1378n − 2016

that may be of interest to artists. To listen for events, artists register with a
central server called the dispatcher. The dispatcher maintains a list of artists
registered for each event, and when it receives an event, it passes it on to
all artists registered for that event. An alternative to a centralized dispatcher
is to have dedicated dispatchers for each event. This alternative “decomposed
dispatcher” version of Chiron was created and also considered in our evaluation.

We checked properties of the Chiron program with a centralized dispatcher
and two artists, and scaled up the number of events for which artists could
register. The two artists were not identical—only artist1 registered for one
third of the events, only artist2 registered for another third, and both artists
registered for the remaining one third of the events.

We checked nine properties on this Chiron program. The description of the
properties and the constraints needed to prove each are shown in Table IX.
In Chiron, the dispatcher uses an array for each event to keep track of which
artists are registered for that event. A VA called “eventi list size” keeps track of
the number of spaces in the array that are used, that is, the number of artists
that are registered for event i. A VA called “eventi list slot j ” keeps track of the
data that is stored in the j th position of the array that stores the artists that
are registered for event i.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

408 • M. B. Dwyer et al.

Table IX. Chiron Properties

Property Description Constraints

p01 artist1 never registers for event1 if it is already regis-
tered for this event, and artist1 never unregisters for
event1 if it is not registered for this event.

TA: artist1

p02 If artist1 is registered for event1 and the dispatcher re-
ceives event1, then the dispatcher will not accept another
event before passing event1 to artist1.

TA: dispatcher
VA: event1 list size
VA: event1 list slot 1
VA: event1 list slot 2

p03 The dispatcher does not notify any artists of event1 until
it receives an event1.

TA: dispatcher

p04 Having received event1, the dispatcher never notifies
artists of event2.

TA: dispatcher

p05 If no artists are registered for event1, the dispatcher does
not notify any artist of event1.

TA: artist1
TA: artist2

p06 The dispatcher never gives event1 to artist1 if artist1
is not registered for event1.

TA: artist1

p07 If artist1 registers for event1 before artist2 does, then
when the dispatcher receives event1 it will first notify
artist1 and then artist2 of this event.

TA: dispatcher
VA: event1 list size
VA: event1 list slot 1

p08 The size of the list used to store the IDs of artists reg-
istered for event1 never exceeds the number of existing
artists.

TA: dispatcher
VA: event1 list size
VA: event1 list slot 1
VA: event1 list slot 2

p09 The program does not terminate while there is an artist
that is registered for an event.

TA: artist1
TA: artist2

Fig. 27. Chiron total times.

Timing information for all of the Chiron properties are shown in Figure 27.
Unfortunately, we could only scale the program up to 53 events, because of
limitations with the language processing tools that we used. FLAVERS verified
all of the nine properties, up to 53 events.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 409

Table X. Curve Fitting for p09

c1n + c0 c2n2 + c1n + c0 c3n3 + c2n2 + c1n + c0 ec0+c1n

MSRes 8.7971 * 105 4.8461 * 104 4.221 * 102 2.9107 * 104

MSReg 1.6812 * 108 1.0487 * 108 7.0696 * 107 1.7514 * 108

c0 −1.6561 * 103 7.0291 * 102 −7.2032 * 101 4.2851
c1 1.1981 * 102 −1.2453 * 102 2.5074 * 101 0.0875
c2 4.4426 −2.1808
c3 8.0284 * 10−2

Fig. 28. Fit comparison for p09.

Performance. Of the Chiron properties, it takes the most time to verify prop-
erty p09, and thus, in Table X, we show the curve fittings for only this property.
For this property, MSRes is best for the cubic polynomial. This can be seen in
the plot shown in Figure 28.

Table XI gives the size information for a sampling of program sizes. Unlike
the previous properties, these sizes do not fit exactly into polynomials, even
when some of the smaller-sized programs are not considered. Thus, we
performed curve fitting on the size metrics shown in Table XI. We found that
the best-fit curve for the number of LOC and nodes is linear, for the number of
edges and tuples it is quadratic, and for the number of node-tuples it is cubic.
Since the amount of space used for an analysis is closely related to the number
of node-tuples, we show the curve-fitting data for this metric in Table XII and
Figure 29.

7.2.5 Tool Comparison. The study reported in Avrunin et al. [1999] used
the Chiron program to compare different finite-state verification techniques
across a range of properties and for different sizes of systems. The tools consid-
ered included both explicit state and symbolic model checkers, SPIN [Holzmann
1997] and SMV [McMillan 1993], respectively; an integer programming based
analysis, INCA [Corbett and Avrunin 1995]; and FLAVERS.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

410 • M. B. Dwyer et al.

Table XI. Size Information for p09

Events LOC Nodes Edges Tuples Node-Tuples

2 556 96 374 559 5,984
10 2,393 314 2,876 9,101 250,542
20 4,690 582 8,894 33,451 641,572
30 6,987 850 17,782 73,126 5,132,994
40 9,286 1,124 30,476 130,001 11,957,892
50 11,583 1,392 46,134 200,751 22,799,552
53 12,274 1,473 51,442 225,214 27,030,782

Table XII. Curve Fitting for p09 Node-Tuples

c1n + c0 c2n2 + c1n + c0 c3n3 + c2n2 + c1n + c0 ec0+c1n

MSRes 9.1562 * 1012 2.1581 * 1011 2.7322 * 109 6.3260 * 1011

MSReg 2.7918 * 1015 1.6195 * 1015 1.0832 * 1015 3.0010 * 1015

c0 −6.1078 * 106 1.6260 * 106 −6.1071 * 103 1.3259 * 101

c1 4.8821 * 105 −3.1284 * 105 2.2593 * 103 0.0739
c2 1.4565 * 104 6.1458 * 102

c3 1.6909 * 102

To give a sense of the variation in performance, we show the comparative run-
times of the tools on the original centralized dispatcher and the decomposed dis-
patcher versions of Chiron, with two artists and increasing numbers of events.
For the original Chiron program, we show the comparison for property p07 in
Figure 30, where FLAVERS exhibited its best comparative performance, and
for property p09 in Figure 31, where FLAVERS exhibited its worst comparative
performance. In both cases, FLAVERS appears to scale significantly better than
the other verification techniques. The performance of different verification tools
is highly sensitive to program structure. Although FLAVERS performs equally
well for both the centralized and decomposed dispatcher versions of Chiron,
the performance of other tools improves, in some cases dramatically, for the de-
composed dispatcher version as illustrated in Figure 32. Although FLAVERS
does not have the best absolute run-time for that property, the rate of growth of
its run-time appears better than, or at least quite competitive with, the other
tools.

7.3 Model Construction

The times presented in the previous subsection included the cost for buiding
the artifacts from the CFGs, and running state propagation. Time usually grew
no worse than cubically in the size of the system being analyzed. To determine
where the time was spent, we broke the process down into three steps: the cost
for building the property automaton, the constraint automata, and the TFG
without MIP edges; the cost for computing the MHP information and adding
the MIP edges; and the cost for running state propagation.

Figures 33 and 34 show this breakdown for two of the properties of the Gas
Station program. The lines in the plot show cumulative times for the process,
meaning the lowest line is just the time for building the initial artifacts; the
middle line includes both the time for building the artifacts, running the MHP

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 411

Fig. 29. Fit comparison for p09 Node-Tuples.

Fig. 30. Tool comparison for p07 on original Chiron.

algorithm, and adding the MIP edges; and the top line is the time for the entire
process, including state propagation.

Across all of the properties presented in the article, the plots tended to look
like one of these two plots. Either the three times grew relatively evenly as the
system size increased, as in Figure 33, which shows the time for the customer
1 start/stop property on the Gas Station with 3 pumps, or the cost of state
propagation was the dominant cost for the process, as in Figure 34, which shows
the time for the correct change property on the Gas Station with 3 pumps.

Since the cost for the overall process was usually no worse than cubic, this
means that the cost for each of these steps was no worse than cubic.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

412 • M. B. Dwyer et al.

Fig. 31. Tool comparison for p09 on original Chiron.

Fig. 32. Tool comparison for p07 on decomposed dispatcher Chiron.

7.4 Discussion

The empirical results in this section demonstrate the feasibility of FLAVERS
analyses. In particular, they demonstrate that there exist relevant properties of
nontrivial programs that can be efficiently verified using an analysis approach,
where the precision of the model is improved incrementally. It was shown empir-
ically that the computational time and space for a FLAVERS analysis, starting
from annotated CFGs through to finding a conclusive result once the set of
constraints was known, grew at a rate that was usually no more than cubic.

In this study, we looked at three properties for the Readers/Writers program,
two properties for the Gas Station program, two properties for each of four
variants of the Dining Philosopher program, and nine properties for the Chiron
program, for a total of 22 properties. Of these, 19 were scalable to programs up

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 413

Fig. 33. Cost breakdown for customer 1 start/stop with 3 pumps.

Fig. 34. Cost breakdown for correct change with 3 pumps.

to 200 replications (or in the case of Chiron 53), where a replication may have
required the addition of a single task, such as a customer in the Gas Station
program, or several tasks, such as a philosopher and a fork in the standard
Dining Philosopher program. Two of the properties, the mutual exclusion
property of the Gas Station program and the no write while reading property
of the Readers/Writers program, had to be reformulated before they could be
verified on programs scaled to 200 replications. The property that could not
be scaled in our experiments, the correct change property of the Gas Station
program, appears to need space cubic in the number of customers in the system,
but with a large coefficient in front of the cubic term, as shown in Table III.

For all the programs we considered, both the lines of code and the number of
tasks in the system grew linearly as we scaled the programs. While FLAVERS’

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

414 • M. B. Dwyer et al.

worst-case performance is O(S6), where S is the number of statements in the
program, our experimental results provide good evidence that, in practice, we
can expect to see performance that is O(S3). In practical terms, there was only
one property of the 22 properties that could not be scaled.

For most of the properties verified, the number of constraints needed did
not change when the program size was scaled up. Exceptions were the mutual
exclusion and correct change properties of the Gas Station program. For
these properties, we could not scale the programs as far as we wanted. We also
failed to scale the Chiron analyses as far as we wanted, but this was due to
limitations in the language-processing tools.

Although the number of constraints remained constant for most problems,
the size of some of the constraints needed to be scaled as the program size
was scaled. For example, in the correct change property of the Gas Station
program, the number of states in the TAs for the operator and pump tasks grows
linearly with the size of the program. Although FLAVERS did not scale well on
this problem, there were other problems where the size of the constraints scaled,
and where the analysis did scale well. The number of states in the TA also grows
linearly with the number of philosophers for the manager task in the mutual
exclusion property of the Dining Philosopher program with the Fork Manager.
Verifying this property on the Fork Manager version required less time than on
the Dictionary and Host versions, where the size of the constraints remained
constant as the programs scaled.

For almost all of the scalable programs we considered, the rate of growth of
analysis cost was best explained by a cubic polynomial with respect to the num-
ber of tasks in the program. This rate of growth included the time for generating
all of the artifacts, starting from the CFGs. For this study, we do not consider
LOC to be a good metric for measuring the complexity of the program. By using
alphabet refinement, FLAVERS builds its model from only the portions of the
program relevant to the property being checked. Thus, a large program with
sparse events will have a small model. Still, with respect to the number of LOC
in the system, the worst-case bound of FLAVERS is a sixth-degree polynomial.
For all of the problems we evaluated, the number of LOC grew linearly with the
number of tasks in the system. This means FLAVERS’ actual performance was
cubic with respect to the number of LOC on these systems. Similarly, we saw
the number of nodes in the TFG growing linearly with respect to the number
of lines of code, not quadratically as indicated by the worst-case bounds.

In FLAVERS, the number of node-tuples in an analysis gives a good indi-
cation of the amount of memory needed to perform an analysis. In most of
our examples, the number of node-tuples grew quadratically with the size of
the system, indicating FLAVERS offers practical performance with regards to
space, in addition to time.

We attribute this performance to FLAVERS’ approach of incrementally im-
proving the model until it is precise enough to prove the property. It is well
known that the cost of unreduced state-space enumeration techniques scales
exponentially with the number of tasks [Taylor 1983a]. Based on the perfor-
mance of other finite-state verification approaches on these or similar programs,
it is not the case that we are choosing “easy” programs as examples. FLAVERS

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 415

is demonstrating polynomial growth on programs with state spaces that grow
exponentially in the number of potential program executions. Unfortunately,
we also saw situations where the rate of growth in FLAVERS’ analysis time
was unacceptable. Recent work has been unable to predict when FLAVERS
or other finite-state verification techniques will have such undesirable perfor-
mance [Avrunin et al. 1999].

Although FLAVERS’ performance on the considered problems is often good,
these programs are small and mostly drawn from the standard example pro-
grams used to test finite-state verification tools. The largest program analyzed
was the Chiron example, which is about 15,000 lines long. Chiron is not a con-
trived program designed to test finite-state verification tools. Since FLAVERS’
performance on Chiron was similar to its performance on the other programs,
we have reason to believe that we will see comparable performance on other
real world programs.

As mentioned previously, although our experiments give the cost of running
FLAVERS on a system where a minimal set of constraints is known, they do
not give any indication of the overall or human cost of applying FLAVERS to
verify a property. In particular, we do not look at the cost of finding a set of
constraints sufficient for proving that a property holds. In our experience, it is
not too difficult to find such a set of constraints; it usually requires one to three
iterations. Moreover, the cost of running FLAVERS for inconclusive problems is
usually much smaller than running it on conclusive problems since our actual
implementation stops as soon as one property violation is found. Thus, the
cost for inconclusive problems is very variable and somewhat serendipitous.
Finally note that there are heuristics that appear to be good at predicting the
constraints that should be used [Tan et al. 2004] to help reduce the number of
iterations needed to find a set of constraints sufficient for either returning a
conclusive result or determining that an inconclusive result is a real error and
not due to a spurious path.

8. RELATED WORK

As both a flow-analysis and a finite-state verification technique, FLAVERS
draws on a long history of previous work. We focus our discussion here on
the connections between FLAVERS and flow analysis of concurrent systems,
model-checking techniques, and systematic approaches to abstraction.

8.1 Flow Analysis

Program flow analysis was developed to enable optimizing compilers to generate
efficient code [Aho et al. 1986]. In flow analysis, specific patterns of behavior are
analyzed by computing the fix-point of a relation defined over a graph structure
whose nodes explicitly encode control information.

Most flow analyses are targeted at analyzing the system for a single prop-
erty, such as the set of live variables at each system statement [Aho et al. 1986].
FLAVERS uses an approach that combines multiple flow analyses into a single
analysis. Combining multiple dependent flow analyses into a single flow analy-
sis (e.g., Click and Cooper [1995]; Holley and Rosen [1981]) offers the potential

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

416 • M. B. Dwyer et al.

to improve the precision of analysis results, for example, by eliminating some
infeasible paths. In FLAVERS, analyses based on constraint automata are com-
bined on-the-fly in such a way that any automaton reaching a violation state
causes the entire combined analysis to reach a violation state. The strength
of this approach is that it makes it easy to define analyses that are sensitive
to selected semantic features of the program, while efficiently abstracting the
balance of the program.

The bulk of flow-analysis research has been aimed at sequential software,
but flow analysis of concurrent software is becoming increasingly important.
Analyses that are both flow-insensitive and context-insensitive can be adapted
directly to reason about concurrent software since, by definition, they do not
reason about the ordering of statements either within or between tasks. Flow-
sensitive analyses typically use flow-graph models that are, essentially, a
collection of task flow graphs with additional edges, or labels, to represent in-
tertask synchronization and communication. These include, for example, anal-
yses to detect the potential for statements to execute concurrently [Masticola
and Ryder 1993; Naumovich and Avrunin 1998; Naumovich et al. 1999b], data
races [Netzer and Miller 1990], and pointer and escape analyses [Salcianu and
Rinard 2001]. For more general analyses, however, interleavings need to either
be modeled in the graph or incorporated into the analysis algorithm. The flow-
graph model used in FLAVERS, described in Section 4, explicitly represents
the potential interleaving of pairs of events.

The application of flow-analysis techniques for validation of sequential
code [Johnson 1978; Osterweil and Fosdick 1976; Ryder 1974] followed quite
quickly after the development of flow analysis for optimization. These ap-
proaches used a set of analyses formulated to detect a fixed set of anomalies.
The Cecil/Cesar system [Olender and Osterweil 1990, 1992] generalized this
approach by providing a single parameterized flow analysis for properties ex-
pressed as QREs. FLAVERS builds on this work by extending the analysis to
concurrent systems and by incorporating a variety of mechanisms to increase
the precision of the results.

More recently, the SLAM [Ball and Rajamani 2001] and BLAST [Henzinger
et al. 2002] projects have each adapted an existing context-sensitive flow-
analysis algorithm [Reps et al. 1995] to reason about correctness properties
of sequential C programs that are specified as automata. Like FLAVERS, these
projects have a flexible approach to incorporating selected semantic features of
the program into their analysis. Unlike FLAVERS, both the SLAM and BLAST
provide automated support for determining how the program should be ab-
stracted. This work is similar to determining what constraints should be used
in FLAVERS, a direction of future work for us.

Flow analysis for validation of concurrent programs has been less well stud-
ied. Masticola and Ryder developed a system for checking deadlock freedom in
Ada tasking systems [Masticola and Ryder 1991; Masticola 1993]. They incor-
porate an approach for refining the system model that is similar in spirit to the
refinements described in Section 4. In their approach, they use flow analyses
to refine the system model prior to the final analysis, thereby increasing the
precision of the analysis results [Masticola and Ryder 1993]. FLAVERS differs

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 417

from this work in that it applies refinements only a single time, provides for
more precise analysis through the use of constraints, and supports analysis of
a wide class of properties as opposed to just deadlock.

8.2 Model Checking

Model checking refers to a class of techniques for checking conformance of the
behaviors encoded in a finite-state transition system to a formula written in a
temporal logic [Manna and Pnueli 1991]. Model checking has gained popularity
due to its success in reasoning about hardware components and communication
protocols [Clarke et al. 1999].

The relationship between model checking and flow analysis is very strong;
both involve a fix-point computation of a relation that encodes a specified prop-
erty. In fact, it has been shown that a wide range of useful flow analyses can
be formulated as model-checking problems and vice versa [Müller-Olm et al.
1999; Schmidt 1998]. The application of model-checking techniques to software
relies on a preprocessing step for extracting a safe, compact model of a system’s
behavior. Only very recent approaches automate this step [Ball and Rajamani
2001; Corbett et al. 2000; Demartini et al. 1999; Visser et al. 2000]. Once a
model is produced, properties of the model can be checked. In contrast, flow
analyses are designed to automatically extract a compact model and then to
analyze this model. FLAVERS applies both of these approaches by extracting a
safe, compact model through the application of refinements, optionally extract-
ing additional information through the use of constraints, and then performing
the property analysis [Dwyer and Clarke 1994].

Explicit-state model checking involves the construction of the reachable state
space of a transition system and the calculation of the formulas that are true
at each state [Clarke et al. 1999]. Much of the early work on static concurrency
analysis took this approach, although each limited their search to specific sys-
tem states, such as states that violate assertions or describe deadlocks [Taylor
1983b; Young et al. 1995]. Unfortunately, the size of a system’s reachable state
space grows exponentially with the number of tasks, even when all data are
ignored [Taylor 1983a]. One popular form of explicit-state model checking is
the automata-based approach employed in the SPIN model checker [Holzmann
1997]. In this approach, the property to be checked is combined with the state
space to reduce model checking to state reachability; for liveness properties the
check involves a form of cycle detection. FLAVERS can be viewed as perform-
ing a kind of explicit-state analysis. In fact, if constraints are used for each
system task and system variable, then FLAVERS will construct the full reach-
able state space encoded in the sets of tuples propagated to the TFG nodes.
The strength of FLAVERS is that it provides a very flexible mechanism for
defining abstracted state spaces that are very compact and for which analysis
is relatively inexpensive.

To increase the applicability of explicit-state analysis, researchers have in-
vestigated a variety of techniques including partial-order reductions that de-
tect equivalent states and then limit analysis to a single representative of the
equivalence class (e.g., Peled [1998]), and compositional approaches that build

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

418 • M. B. Dwyer et al.

and analyze the state space compositionally, (e.g., Cheung and Kramer [1996];
Cleaveland et al. [1993]; Yeh and Young [1991]). Although none of these tech-
niques have been able to reduce the worst-case complexity of analysis to be
subexponential, each technique has been successfully applied to selected sys-
tems. FLAVERS incorporates a form of partial-order reduction [Naumovich
et al. 1999] and has been used to perform assume-guarantee compositional
reasoning [Dwyer 1997].

Information about the execution environment of the system under analysis
can help reduce the number of reachable system states. Cheung and Kramer
[1996] model behaviors of execution environments with context constraints in
the context of explicit compositional model checking. In their approach, con-
text constraints are FSAs that are composed with the FSAs modeling compo-
nents of the system under analysis. These context constraints are quite similar
to FLAVERS’ constraints, and our use of constraints to model the execution
environment is identical to their approach. FLAVERS’ constraints are more
general for encoding different semantic aspects of a program. For example, VA
constraints are derived from the abstract finite semantics of a variable’s data
type.

There is a rich literature on nonenumerative state space analyses. Some of
the most well-studied are the symbolic model checking approaches [McMillan
1993]. These operate by manipulating an encoding of the next-state function
using some form of decision diagram, typically an ordered binary decision dia-
gram [Bryant 1992]. Fix-point calculations are performed using this represen-
tation to determine the set of states that satisfy a given formula. For certain
systems, symbolic encoding can yield reductions in the space and time required
for model checking by several orders of magnitude. Unfortunately, it has proven
very difficult to predict whether such reductions will be effective for a given sys-
tem and property to be analyzed. Other nonenumerative techniques can offer
similar advantages, for example, deductive methods based on theorem prov-
ing, (e.g., Huisman et al. [1999]; Flanagan et al. [2002]), and methods based on
integer programming [Corbett and Avrunin 1995].

8.3 State-space Abstraction

Fundamental decidability results force all precise concurrency analyses to em-
ploy reductions or abstractions to achieve tractability. Flow analyses encode
abstractions that preserve only the property under analysis. Flow analyses ex-
pressed as abstract interpretations [Cousot and Cousot 1977] make the nature
of the abstraction explicit. Recent work has applied abstract interpretation to
the generation of abstracted state spaces that are amenable to model checking.

In predicate abstraction, one provides predicates over a transition system’s
state variables and a new transition system is derived that has a boolean state
variable for each predicate [Graf and Saı̈di 1997]. Scaling this approach to
programming languages is a challenge, and several partial solutions have been
investigated (e.g., Ball and Rajamani [2001]; Dwyer et al. [2001]). FLAVERS
can accommodate these kinds of abstractions through the use of constraints.
For instance, an integer variable could be modeled by a constraint automaton

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 419

with five states: unknown, positive, negative, zero, and violation. Transitions in
the automaton would be defined appropriately for operations on the variable,
such as tests of, and assignments to, the variable.

9. CONCLUSION

We have presented FLAVERS, a finite-state verification approach that ana-
lyzes whether software systems satisfy user-defined properties. In contrast to
other finite-state verification techniques, FLAVERS creates a system model
that is relatively small but still conservative with respect to the property that
is being evaluated. FLAVERS achieves this reduction in size at the cost of preci-
sion. Analysts can improve the precision of the results as needed by selectively
and judiciously incorporating additional semantic information into the analy-
sis problem. FLAVERS provides automated support for creating some of the
common constraints that are used to represent this additional information.

Our evaluation, although preliminary, indicates that sufficient precision can
usually be achieved relatively easily and that the cost for many problems grows
as a low-order polynomial in the size of the system. In addition to the evalu-
ation reported here, FLAVERS has been applied in a number of interesting
ways. It has been used in an empirical evaluation of concurrency analysis tech-
niques [Chamillard et al. 1996] and to analyze communication protocols [Nau-
movich et al. 1996], partial software systems [Dwyer 1997], and architectural
system descriptions [Naumovich et al. 1997]. It has also been applied to ad-
vanced distributed simulation systems [Bouwens et al. 1996] and to evaluate
the adherence of such systems to high-level architectural requirements [Sci-
ence Applications International Corporation 1997]. In these latter two studies,
FLAVERS detected previously unknown errors in the systems being analyzed.
As is often the case with rigorous verification techniques, many of the errors
were found just because of the additional scrutiny associated with formulating
the properties and annotating the code. Although more errors were detected
while preparing the associated artifacts than while using verification, the er-
rors that FLAVERS did detect were deemed to be more complicated then those
caught during preparation. In other words, the errors that FLAVERS detected
could not be easily observed by the analyst without such validation tools.

Although this article has described the approach in some detail for Ada sys-
tems, the approach is relatively language independent. Each programming lan-
guage must be carefully translated into the system model so that the ordering
of events is conservatively captured in the TFG’s flow of control. To date, trans-
lators have been successfully developed by others for C++ and Jovial. We are
currently exploring some alternative models for Java [Naumovich et al. 1999a].
Interestingly, changes to the state-propagation algorithm to support these dif-
ferent languages were relatively minor. The MHP algorithm, however, seems to
require some careful specialization for programming languages with different
models of concurrency [Naumovich and Avrunin 1998; Naumovich et al. 1999b].

In this article, we have emphasized how FLAVERS can be used to verify
properties of software systems. In addition to being applicable to programs,
the FLAVERS approach is applicable to other artifacts that capture the flow

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

420 • M. B. Dwyer et al.

of events through a system. For example, it could be applied to architectural
descriptions or detailed designs. When applied to programs, the verification
process could be viewed as a complementary activity to testing. Alternatively,
it could be used to help with debugging, where a hypothesis about a fault is
formulated as a property and FLAVERS is then used to determine if there are
any traces through the TFG (and thus consequently through the code) that
would cause this fault to occur. Such support is particularly important for dis-
tributed systems, since output results may vary depending on the run-time task
scheduling.

There are some limitations to the approach used in FLAVERS. The model
is less precise than reachability-graph based approaches [Cheung and Kramer
1993; Holzmann 1997], and thus does not seem well suited for the kinds of de-
tailed analysis required for deadlock detection and definition/reference anomaly
detection. Moreover, it is restricted to properties that can be represented in a
regular language. Being a static analysis approach, it also cannot reason about
dynamic configurations. Thus, as was done in our experimental evaluation,
specific configurations must be selected. Users can often present compelling
arguments that verification over a restricted set of configurations is equiva-
lent to verification over the general set, but this is not always possible or easy.
Others have argued, however, that most faults are detected with small sample
sizes [Jackson and Vaziri 2000].

The current implementation of FLAVERS/Ada does not support dynamically-
allocated data, recursion, exceptions, generics, or some of the low-level repre-
sentation data types. There has been considerable work on modeling recursion
for dataflow analysis [Reps et al. 1995], but using these techniques to model
multithreaded systems is not practical [Ramalingam 2000]. By reducing the
flow-graph representation based on the property to be checked, FLAVERS may
localize the need to model recursion to a few threads, and we are studying
the extent to which existing techniques can be applied in this case. The other
limitations primarily pose engineering hurdles that could be addressed with
appropriate effort.

There are several interesting research directions to be explored. Improving
performance is always of concern. We are particularly interested in exploring
techniques for decomposing the analysis problem. Because the events of interest
tend to be sparsely located throughout the system, the resulting model tends to
be small after alphabet refinement and other optimizations are applied. In all
the programs that we have examined, using inlining to create the model worked
reasonably well since the optimized representation for an invoked component
was usually very small, and often was empty. This will not always be the case,
however, so we are exploring how counterexamples can be used to automate
assume-guarantee reasoning using the L* learning algorithm [Cobleigh et al.
2003].

Counterexample generation also raises some interesting issues. We have
studied how different variations of the state-propagation algorithm can im-
pact performance, depending on whether consistent or inconsistent results are
expected or if short counterexample traces are desired [Cobleigh et al. 2001].
Path length is only one of the important attributes of counterexamples, however.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 421

Another concern is determining if the counterexample is executable. One inter-
esting approach, used in SLAM [Ball and Rajamani 2001], is to employ symbolic
evaluation techniques to help determine path executability. We are currently
exploring techniques for guiding the selection of counterexamples using the
constraint mechanism, not only for path feasibility, but also as a debugging aid.

Specifying properties is another area for future work. It is surprisingly dif-
ficult to correctly capture the intent of a system. Although regular expressions
and FSA models seem more natural to practitioners than temporal logics, many
subtle options need to be considered when formulating a property. A recent ex-
perimental study showed that many finite-state verification properties could be
mapped to a small number of property patterns [Dwyer et al. 1999]. Building
on that work, a framework for extending these patterns into more extensively
parameterized templates has been developed. This framework provides FSA-
based templates as well as a natural-language interface for describing proper-
ties [Smith et al. 2002]. The hope is that this framework will help practitioners
formulate properties in a way that is more natural and intuitive for them, but,
at the same time, will provide a rigorous mathematical representation that can
be used as a basis for verification.

Finally, model development is an area of future research that we have been
actively exploring. One issue is whether the iterative model development ap-
proach used by FLAVERS can be supplanted with an approach that exten-
sively exploits compiler optimizations, partial evaluation, and abstraction tech-
niques. The Bandera system is being developed to explore this issue [Corbett
et al. 2000]. It is employing a number of techniques, such as program slicing,
to automatically create a concise model, optimized for the property and sys-
tem configuration. This direction is also being explored in the work on Java
PathFinder [Visser et al. 2000]. The resulting models could be sufficiently
precise that incremental improvement might not be necessary. Alternatively,
this concise model might be a better starting point for the incremental refine-
ment approach used by FLAVERS. We are currently developing a version of
FLAVERS where the TFG is built from the highly-optimized internal represen-
tation produced by Bandera. We are also exploring alternative representations,
such as maintaining some of the variable information directly in the TFG rep-
resentation, as well as doing some dynamic expression evaluation during the
analysis process itself.

Although there are a number of interesting research issues to be explored,
the FLAVERS toolset demonstrates the feasibility of applying flow-analysis-
based verification techniques to software systems. It is extremely important
that practical techniques be developed to help reason about software systems.
Distributed systems are particularly problematic, and are becoming extremely
common. Such systems are more difficult to reason about, to test, and to de-
bug than sequential systems, for which these problems are difficult enough.
Although the experimental evaluation reported here is preliminary, and the
example programs are relativley modest in size, the experimental results are
promising and lead us to believe that finite-state verification techniques, in
general, and the FLAVERS approach, in particular, hold considerable promise
for helping developers reason about systems.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

422 • M. B. Dwyer et al.

ELECTRONIC APPENDIXES

Electronic Appendixes B, the size information for all of the property checks
presented in the body of this article, and C, the timing information for all of the
property checks, are available in the ACM Digital Library.

APPENDIX

This appendix contains proofs of conservativeness of the reduced CFG model,
TFG model, and the state-propagation algorithm of FLAVERS, and the proof
of complexity of the state-propagation algorithm.

A. PROOFS

A.1 RCFG Conservativeness

The following lemma and theorem prove that the CFG alphabet refinement is
conservative. We call nodes in the CFG that are removed by the refinement
algorithm, and thus do not appear in the RCFG, removed and all other nodes
retained. In the lemma, we refer to two CFGs, G and G ′. We use superscripts to
differentiate between different elements of the tuples of G and G ′. For example,
N G refers to the set of nodes of G, and N G ′

refers to the set of nodes of G ′. We
use this convention to disambiguate the origin of an element when necessary.

LEMMA A.1. Let G be a CFG and G ′ the RCFG obtained from G, using the
alphabet refinement algorithm. For any pair of retained nodes m and n from
N G with corresponding nodes m′ and n′ in N G ′

, if there is a path from m to n in
G that consists only of removed nodes, then there is an edge (m′, n′) in EG ′

.

PROOF. The proof is by induction on the length of the path. If this path is of
length 1, that is, (m, n) ∈ EG , then trivially (m′, n′) ∈ EG ′

, since only those edges
that are incident to a removed node are removed by the alphabet-refinement
algorithm.

Assume that the statement of the theorem holds for paths of length k. Con-
sider any path of length k +1: m, n1, . . . , nk , n, such that n1, . . . , nk are removed
nodes. Let ni ∈ {n1, . . . , nk} be the first of the nodes n1, . . . , nk removed by the
alphabet-refinement algorithm. Then, since ni−1 is a predecessor of ni, and ni+1
is a successor of n, an edge (ni−1, ni+1) will be created (temporarily, if ni−1 �= m
or ni+1 �= n). After this, the length of the path m, n1, . . . , ni−1, ni+1, . . . , nk , n is k
and, according to the induction hypothesis, eventually an edge between m′ and
n′ is created.

THEOREM 4.2 (RCFG CONSERVATIVENESS). Let G be a CFG and G ′ the corre-
sponding RCFG obtained using the alphabet-refinement algorithm. Let R ⊆ N G

be the set of nodes of G that were retained in G ′. For any sequence of nodes
π ∈ (N G)∗, define Map(π) ∈ (N G ′

)∗ as the sequence of nodes in G ′ that corre-
sponds to the nodes in the projection π |R. If π is a path in G, then Map(π) is a
path in G ′.

PROOF. We argue by induction on the number of nodes in π . The statement
of the theorem trivially holds if π is a path of length 0. Suppose the statement

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 423

of the theorem holds for any path of length k. Consider any path of length k +1.
It can be written as πkn, where πk is a path of length k, and n ∈ N G is the final
node in the path.

First, suppose n /∈ R. Then πk|R = πkn|R . By our inductive hypothesis, we
know that Map(πk) is a path in G ′, so Map(πkn) is also a path in G ′, as desired.

Second, suppose n ∈ R. Let m ∈ N G be the last retained node in πk . Note
that path πk always contains such a node, since any path in G starts with nG

initial
and, according to the alphabet refinement algorithm, nG

initial is retained. Since
m, n ∈ R and are connected by a path of removed nodes, then by Lemma A.1,
there is an edge (m′, n′) ∈ EG ′

. Using the inductive hypothesis, Map(πk|R) is a
path in G ′. Since (m′, n′) ∈ EG ′

, Map(πkn) is also a path in G ′, as desired.

A.2 TFG Conservativeness

The following theorem states and proves conservativeness of the TFG model.

THEOREM 4.4 (TFG CONSERVATIVENESS). For each actual execution of the sys-
tem S, the TFG contains a path, starting in the initial node, that exhibits
the same set of events projected on �I as this execution projected on �I. Thus,
L(S) ⊆ L(G).

PROOF. For easy correlation between the system and the TFG, we use TFG
nodes to represent a unit of system execution. This could be viewed as intro-
ducing a unique event to mark each node in the TFG and tracking these events
in the system. Thus, in this proof we say “a node is executed” to mean that the
code corresponding to this node is executed. The system executes a communi-
cation node when the synchronization between the two tasks represented by
this communication node takes place. The proof is by induction on the length
of the execution.

Executions of length 1 correspond to execution of a single node, which must
be the initial node ni

initial in one of the system tasks Ti. Since the initial node of
the TFG is connected to each of the initial nodes of the tasks, the corresponding
path in the TFG is ninitial, ni

initial.
As an inductive hypothesis, suppose that the statement of the theo-

rem holds for executions of length k. Consider any execution of length
k + 1: ninitial, n1, . . . , nk , nk+1. By the induction hypothesis, there is a path
ninitial, n1, . . . , nk in the TFG. We consider several cases based on the relation-
ship between nk and nk+1.

—nk and nk+1 are in the same task Ti. There are several possibilities to
consider.
(1) First, assume that both nk and nk+1 are local nodes, but neither corre-

sponds to a task synchronization. Since they happen subsequently on
an actual execution of the system, the code corresponding to nk pre-
cedes the code corresponding to nk+1 in the control flow of Ti. Since,
by Theorem 4.2, RCFGs are conservative representations of individual
tasks, edge (nk , nk+1) is in the RCFG for Ti. By the TFG construction,
this edge is also in the TFG, and so path ninitial, n1, . . . , nk , nk+1 is in the
TFG.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

424 • M. B. Dwyer et al.

(2) Second, suppose nk is a local node that corresponds to a task synchroniza-
tion statement of task Ti. The next event in the system in task Ti after
a synchronization statement is the actual synchronization with another
task. Therefore, nk+1 must be a communication node. By the TFG con-
struction, this is indeed the case, and (nk , nk+1) ∈ Ecom. Therefore, path
ninitial, n1, . . . , nk , nk+1 is in the TFG.

(3) Third, suppose that nk corresponds to a task synchronization, which
means that nk ∈ Ncom. Then nk+1 must be a local node in task Ti that
immediately follows the synchronization represented by nk . By the TFG
construction, (nk , nk+1) ∈ Ecom. Therefore, path ninitial, n1, . . . , nk , nk+1 is
in the TFG.

(4) Finally, by the TFG construction, nk and nk+1 cannot both be communi-
cation nodes.

—nk and nk+1 belong to different sets of tasks. Let nk belong to task Ti and
nk+1 belong to task T j , where i �= j . This case represents a context switch
between two tasks, where executions of Ti and T j are interleaved. The MHP
algorithm is conservative [Naumovich and Avrunin 1998] and, therefore, it
detects that nk and nk+1 may happen in parallel. Since construction of MIP
edges is directly based on the MHP algorithm, (nk , nk+1) ∈ Emip. Therefore,
path ninitial, n1, . . . , nk , nk+1 is in the TFG.

—nk+1 is the final node nfinal. In this case, the execution ninitial, n1, . . . , nk ,
nk+1 represents a terminal execution of the system, which means that the
task RCFGs execute their final nodes, and so nk is one of these final nodes
ni

final. Since the TFG contains an edge from each ni
final to the final node of the

TFG, nfinal, the path corresponding to this execution is in the TFG.

A.3 State-Propagation Conservativeness

The following theorem proves conservativeness of the state-propagation algo-
rithm of FLAVERS.

THEOREM 5.1 (STATE-PROPAGATION CONSERVATIVENESS). If state-propagation
analysis over a TFG determines that a property holds, then this property holds
for the actual system. Formally, for any TFG node n, if there exists an actual
program execution on which state r of the property is associated with n, then
after the state-propagation algorithm terminates, r ∈ States[n].

PROOF. According to Theorem 4.4 about conservativeness of the TFG repre-
sentation, there is a path π = ninitial, n1, . . . , nk that corresponds to the actual
execution described in the statement of this theorem. Let si be the state of the
property on node ni of the path. We use an argument by induction on the length
of π .

Suppose first that the length of π is 0, meaning it consists of only ninitial. Since
the initial node represents the state of the program before the execution begins,
the only state of the property that can correspond to this state of the program
is the start state, s. According to the initialization step of the state-propagation
algorithm, s ∈ States[ninitial].

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 425

Assume that the statement of the theorem holds for executions that corre-
spond to paths of length k. Consider the case where the length of π is k + 1.
By the induction hypothesis, state sk that is associated with nk on path π is in
States[nk]. When sk was added to States[nk], the state propagation algorithm
placed nk+1 on the worklist, since edge (nk , nk+1) is in the TFG. When the al-
gorithm subsequently processes node nk+1, all states associated with each of
nk+1’s predecessors, including sk , are propagated through nk+1. Therefore, state
sk+1 will be placed in States[nk+1].

Next, we show that the results of state propagation with constraints are
conservative. This will be proved in two parts. The first part shows that state
propagation with constraints, where pruning of tuples is not performed when a
constraint automaton enters its violation state, is conservative. Next, we show
that the pruning of tuples does not change the conservativeness of the results of
state propagation. For the first part of the proof, we need to change the definition
of F n(X), the transfer function for a TFG node n and a set of tuples X , from
the one given in Subsection 6.3 to one that does not prune tuples:

∀n ∈ N , ∀X ⊆ Tuples, F n(X) = { f n(T) | T ∈ X }. (1)

COROLLARY A.2 (CONSERVATIVENESS OF STATE PROPAGATION WITH CONSTRAINTS AND

WITHOUT PRUNING TUPLES). Given a TFG, a property automaton P, and a set of
constraint automata C1, C2, . . . , Ck, for any TFG node n, if there exists an actual
program execution on which a tuple T = (t P , tC1 , tC2 , . . . , tCk) is associated with
n, then after the state-propagation algorithm terminates, using the propagation
function given in Equation (1), T is associated with n.

PROOF. The proof of this corollary mimics the proof of Theorem 5.1.

THEOREM A.3 (CONSERVATIVENESS OF STATE PROPAGATION WITH CONSTRAINTS AND

WITH PRUNING TUPLES). Given a TFG, a property automaton P, and a set of
constraint automata C1, C2, . . . , Ck, for any TFG node n, if there exists an ac-
tual program execution on which a tuple T = (t P , tC1 , tC2 , . . . , tCk), such that
∀i, 1 ≤ i ≤ k, tCi �= vCi , is associated with nfinal, then after the state-propagation
algorithm terminates, using the propagation functions from Section 6.3, T is
associated with nfinal.

PROOF. The proof of this theorem follows from that of Corollary A.2 if we
can prove that when the transfer function without pruning (Equation (1)) is
used, then if a tuple T1 = (t1

P , t1
C1 , t1

C2 , . . . , t1
Ck) that has one of its constraint

automata Ci in the violation state, that is, for some 1 ≤ i ≤ k, t1
Ci = vCi , is

associated with node n of the TFG, then the propagation of tuple T1 does not
result in a tuple T2 = (t2

P , t2
C1 , t2

C2 , . . . , t2
Ck) being associated with nfinal, such

that t2
Ci �= vCi . If such a tuple T2 could be associated with nfinal, then state

propagation would examine T2 when determining if the property holds and
removing T1 would be unsafe. There are two cases to consider:

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

426 • M. B. Dwyer et al.

—First, suppose that n �= nfinal. Then if tuple T1 is propagated along a
path n, n1, . . . , nk , nfinal, then the tuple associated with nfinal would be T2 =
f

nfinal (f nk (· · · f n1 (T1) · · ·)). If t1
Ci = vCi , then, according to the propagation

function in Equation (1), and because all transitions out of a violation state
are self-transitions, t2

Ci = vCi .
—Second, suppose that n = nfinal. Then, since the final node has no outgoing

edges, there is no way that T1 can be propagated to any other nodes.

Since pruning tuples with constraints in violation states does not affect the
result of state propagation, state propagation with constraints and with prun-
ing tuples is conservative.

A.4 Complexity of the State-Propagation Algorithm

The following theorem proves the complexity result for the state propagation
algorithm from Figure 10.

THEOREM 5.2 (STATE-PROPAGATION COMPLEXITY). Given a TFG, with nodes N G,
and a property automaton, with states SP , state-propagation algorithm termi-
nates in O(|SP ||N G |2) time.

PROOF. First, note that the total number of worklist insertions is
O(|EG ||SP |), because a node is added to the worklist only if the States set of one
of its predecessors changes, and each such set can change at most |SP | times.
Since |EG | ≤ |N G |2, the complexity of maintaining the worklist falls within
O(|SP ||N G |2).

We prove that the complexity of recomputing sets States, IN, V , and U , for
any node n, amortized over the course of the algorithm, is O(|SP ||N G |). Since
there are |N G | nodes in the TFG, the statements of the theorem will follow.

Consider any node n ∈ N G . In a run of the algorithm, each of the IN and V
sets computed for n has at most |SP | states added to it from each of n’s prede-
cessors. Adding a property automaton state to a set or checking its containment
in a set takes constant time. Since n can have at most |N G | − 1 predecessors,
the total number of operations involving sets IN and V for n is O(|SP ||N G |).

Computing set U involves propagating a state through node n and checking
if the resulting state is already in States[n]. Both of these operations take con-
stant time. Since these operations are applied only once to each state that is
propagated into n, the complexity of computing set U for n is O(|SP |). Similarly,
the complexity of computing States[n] is also O(|SP |).

A state can be added to the Flow set of any edge (n, r) only once, after this
state has been added to set States[n]. Therefore, in a run of the algorithm, at
most |SP | states are added to Flow[(n, r)]. Since the number of edges is bounded
by |N G |2, the total cost of adding states to the Flow sets is O(|SP ||N G |2). The to-
tal number of operations of removing states from Flow sets is alsoO(|SP ||N G |2),
since each state put in a Flow set has to be removed from this set later.

Finally, determining the results of state propagation requires examining all
states associated with the final node. Therefore, this operation is bounded by

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 427

the number of states in the property, |SP |. The total complexity of this algorithm
is O(|SP ||N G |2 + |SP |) = O(|SP ||N G |2).

ACKNOWLEDGMENTS

The authors would like to thank Michael Sutherland of the UMass Statistical
Consulting Center for his help in analyzing the experimental results and Rachel
Cobleigh, Heather Conboy, Stephen Siegel, and Jianbin Tan for helping with
several of the examples. Jay Corbett and Corina Păsăreanu contributed to the
Chiron experiments. Leon Osterweil and George Avrunin have been valued
colleagues, providing insightful comments over the years.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

AVRUNIN, G. S., BUY, U. A., CORBETT, J. C., DILLON, L. K., AND WILEDEN, J. C. 1991. Automated
analysis of concurrent systems with the constrained expression toolset. IEEE Trans. Softw. En-
gin. 17, 11 (Nov.), 1204–1222.

AVRUNIN, G. S., CORBETT, J. C., DWYER, M. B., PĂSĂREANU, C. S., AND SIEGEL, S. F. 1999. Compar-
ing finite-state verification techniques for concurrent software. TR 99-69, University of Mas-
sachusetts, Department of Computer Science. (Nov.).

BALL, T. AND RAJAMANI, S. K. 2001. Automatically validating temporal safety properties of inter-
faces. In Proceedings of the 8th SPIN Workshop, M. B. Dwyer, Ed. Lecture Notes in Computer
Science, vol. 2057. 101–122.

BOUWENS, C., MCKENZIE, R., AND DEAN, C. 1996. Investigating static data flow analysis for ad-
vanced distributed simulation verification. In Proceedings of the 15th Workshop in the Interoper-
ability of Distributed Interactive Simulation. 473–478.

BRYANT, R. E. 1992. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24, 3 (Sept.), 293–318.

CHAMILLARD, A. T., CLARKE, L. A., AND AVRUNIN, G. S. 1996. An empirical comparison of static con-
currency analysis techniques. TR 96-84, University of Massachusetts, Department of Computer
Science. (May).

CHEUNG, S.-C. AND KRAMER, J. 1993. Tractable flow analysis for anomaly detection in distributed
programs. In Proceedings of the 4th European Software Engineering Conference, I. Sommerville
and M. Paul, Eds. Lecture Notes in Computer Science, vol. 717. 283–300.

CHEUNG, S.-C. AND KRAMER, J. 1996. Context constraints for compositional reachability analysis.
ACM Trans. Softw. Engin. Method. 5, 4 (Oct.), 334–377.

CLARKE, JR., E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge,
MA.

CLEAVELAND, R., PARROW, J., AND STEFFEN, B. 1993. The concurrency workbench: A semantics-based
tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst. 15, 1 (Jan.), 36–
72.

CLICK, C. AND COOPER, K. D. 1995. Combining analyses, combining optimizations. ACM Trans.
Program. Lang. Syst. 17, 2 (March), 181–196.

COBLEIGH, J. M., CLARKE, L. A., AND OSTERWEIL, L. J. 2001. The right algorithm at the right time:
Comparing data flow analysis algorithms for finite state verification. In Proceedings of the 23rd
International Conference on Software Engineering. 37–46.

COBLEIGH, J. M., GIANNAKOPOULOU, D., AND PĂSĂREANU, C. S. 2003. Learning assumptions for compo-
sitional verification. In Proceedings of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, H. Garavel and J. Hatcliff, Eds. Lecture Notes in
Computer Science, vol. 2619. 331–346.

CORBETT, J. C. AND AVRUNIN, G. S. 1994. Towards scalable compositional analysis. In Proceedings
of the 2nd ACM SIGSOFT Symposium on the Foundations of Software Engineering. 53–61.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

428 • M. B. Dwyer et al.

CORBETT, J. C. AND AVRUNIN, G. S. 1995. Using integer programming to verify general safety and
liveness properties. Form. Meth. Syst. Des. 6, 1 (Jan.), 97–123.

CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S., PĂSĂREANU, C. S., ROBBY, AND ZHENG, H. 2000.
Bandera: Extracting finite-state models from Java source code. In Proceedings of the 22nd Inter-
national Conference on Software Engineering. 439–448.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the 4th ACM
Symposium on Principles of Programming Languages. 238–252.

DEMARTINI, C., IOSIF, R., AND SISTO, R. 1999. A deadlock detection tool for concurrent Java pro-
grams. Softw.–Prac. Exper. 29, 7 (June), 577–603.

DIJKSTRA, E. W. 1976. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ.
DURI, S., BUY, U., DEVARAPALLI, R., AND SHATZ, S. M. 1993. Using state space reduction methods

for deadlock analysis in Ada tasking. In Proceedings of the 1993 International Symposium on
Software Testing and Analysis. 51–60.

DWYER, M. B. 1995. Data flow analysis for verifying correctness properties of concurrent pro-
grams. Ph.D. thesis, University of Massachusetts, Amherst.

DWYER, M. B. 1997. Modular flow analysis for concurrent software. In Proceedings of the 12th
IEEE International Conference on Automated Software Engineering. 264–273.

DWYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C. 1999. Patterns in property specifications for finite-
state verification. In Proceedings of the 21st International Conference on Software Engineering.
16–22.

DWYER, M. B. AND CLARKE, L. A. 1994. Data flow analysis for verifying properties of concurrent
programs. In Proceedings of the 2nd ACM SIGSOFT Symposium on the Foundations of Software
Engineering. 62–75.

DWYER, M. B., HATCLIFF, J., JOEHANES, R., LAUBACH, S., PĂSĂREANU, C. S., ROBBY, VISSER, W., AND ZHEN,
H. 2001. Tool-supported program abstraction for finite-state verification. In Proceedings of the
23rd International Conference on Software Engineering. 177–187.

FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002. Extended
static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation. 234–245.

GRAF, S. AND SAı̈DI, H. 1997. Construction of abstract state graphs with PVS. In Proceedings of the
9th International Conference on Computer-Aided Verification, O. Grumberg, Ed. Lecture Notes
in Computer Science, vol. 1254. 72–83.

HECHT, M. S. 1977. Flow Analysis of Computer Programs. The Computer Science Library Pro-
gramming Language Series. Elsevier, North-Holland.

HELMBOLD, D. AND LUCKHAM, D. 1985. Debugging Ada tasking programs. IEEE Softw. 2, 2 (March),
47–57.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy abstraction. In Proceedings
of the 29th ACM Symposium on Principles of Programming Languages. 58–70.

HOARE, C. A. R. 1969. An axiomatic basis for computer programming. Comm. ACM 12, 10 (Oct.),
576–580.

HOLLEY, L. H. AND ROSEN, B. K. 1981. Qualified data flow problems. IEEE Trans. Softw. Engin.
SE-7, 1 (Jan.), 60–78.

HOLZMANN, G. J. 1997. The model checker SPIN. IEEE Trans. Softw. Engin. 23, 5 (May), 279–295.
HOLZMANN, G. J. 2000. Logic verification of ANSI-C code with SPIN. In Proceedings of the 7th

SPIN Workshop, K. Havelund, J. Penix, and W. Visser, Eds. Lecture Notes in Computer Science,
vol. 1885. 131–147.

HOWDEN, W. E. 1986. A functional approach to program testing and analysis. IEEE Trans. Softw.
Engin. SE-12, 10 (Oct.), 997–1005.

HUISMAN, M., JACOBS, B., AND VAN DEN BERG, J. 1999. A case study in class library verification: Java’s
Vector class. In Object-Oriented Technology: ECOOP’99 Workshop Reader, A. M. D. Moreira and
S. Demeyer, Eds. Lecture Notes in Computer Science, vol. 1743. 109–110.

JACKSON, D. AND VAZIRI, M. 2000. Finding bugs with a constraint solver. In Proceedings of the 2000
International Symposium on Software Testing and Analysis. 14–21.

JOHNSON, S. C. 1978. Lint, a C program checker. In Unix Programmer’s Manual, AT&T Bell
Laboratories.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

Flow Analysis for Verifying Properties of Concurrent Software Systems • 429

KELLER, R. K., CAMERON, M., TAYLOR, R. N., AND TROUP, D. B. 1991. User interface development and
software environments: The Chiron-1 system. In Proceedings of the 13th International Conference
on Software Engineering. 208–218.

MANNA, Z. AND PNUELI, A. 1991. The Temporal Logic of Reactive and Concurrent Systems: Speci-
fication. Springer-Verlag.

MARLOWE, T. J. AND RYDER, B. G. 1990. Properties of data flow frameworks. Acta Infomat. 28, 2,
121–163.

MASTICOLA, S. P. 1993. Static detection of deadlocks in polynomial time. Ph.D. thesis, Rutgers
University.

MASTICOLA, S. P., MARLOWE, T. J., AND RYDER, B. G. 1995. Lattice frameworks for multiscore and
bidirectional data flow problems. ACM Trans. Program. Lang. Syst. 17, 5 (Sept.), 777–803.

MASTICOLA, S. P. AND RYDER, B. G. 1991. A model of Ada programs for static deadlock detection in
polynomial time. In Proceedings of Workshop on Parallel and Distributed Debugging. 97–107.

MASTICOLA, S. P. AND RYDER, B. G. 1993. Non-concurrency analysis. In Proceedings of the 4th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 129–138.

MCMILLAN, K. L. 1993. Symbolic Model Checking. Kluwer Academic Publishers.
MILNER, R. 1989. Communication and Concurrency. Prentice-Hall.
MÜLLER-OLM, M., SCHMIDT, D. A., AND STEFFEN, B. 1999. Model-checking: A tutorial introduction.

In Proceedings of Static Analysis, Sixth International Symposium, A. Cortesi and G. Filé, Eds.
Lecture Notes in Computer Science, vol. 1694. 330–354.

NAUMOVICH, G. AND AVRUNIN, G. S. 1998. A conservative data flow algorithm for detecting all pairs
of statements that may happen in parallel. In Proceedings of the 6th ACM SIGSOFT Symposium
on the Foundations of Software Engineering. 24–34.

NAUMOVICH, G., AVRUNIN, G. S., AND CLARKE, L. A. 1999a. Data flow analysis for checking properties
of concurrent Java programs. In Proceedings of the 21st International Conference on Software
Engineering. 399–410.

NAUMOVICH, G., AVRUNIN, G. S., AND CLARKE, L. A. 1999b. An efficient algorithm for computing
MHP information for concurrent Java programs. In Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, O. Nierstrasz and M. Lemoine, Eds. Lecture Notes in Computer Science,
vol. 1687. 338–354.

NAUMOVICH, G., AVRUNIN, G. S., CLARKE, L. A., AND OSTERWEIL, L. J. 1997. Applying static analysis
to software architectures. In Proceedings of the 6th European Software Engineering Conference
held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
M. Jazayeri and H. Schauer, Eds. Lecture Notes in Computer Science, vol. 1301. 77–93.

NAUMOVICH, G. AND CLARKE, L. A. 2000. Classifying properties: An alternative to the safety-
liveness classification. In Proceedings of the 8th ACM SIGSOFT Symposium on the Foundations
of Software Engineering. 159–168.

NAUMOVICH, G., CLARKE, L. A., AND COBLEIGH, J. M. 1999. Using partial order techniques to improve
performance of data flow analysis based verification. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering. 57–65.

NAUMOVICH, G., CLARKE, L. A., AND OSTERWEIL, L. J. 1996. Verification of communication protocols
using data flow analysis. In Proceedings of the 4th ACM SIGSOFT Symposium on the Foundations
of Software Engineering. 93–105.

NAUMOVICH, G., CLARKE, L. A., AND OSTERWEIL, L. J. 1998. Efficient composite data flow analysis
applied to concurrent programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis For Software Tools and Engineering. 51–58.

NETZER, R. H. B. AND MILLER, B. P. 1990. Detecting data races in parallel program executions. In
Proceedings of Languages and Compilers for Parallel Computing, Fourth International Workshop.
109–129.

OLENDER, K. M. AND OSTERWEIL, L. J. 1990. Cecil: A sequencing constraint language for automatic
static analysis gereration. IEEE Trans. Softw. Engin. 16, 3 (March), 268–280.

OLENDER, K. M. AND OSTERWEIL, L. J. 1992. Interprocedural static analysis of sequencing con-
straints. ACM Trans. Softw. Engin. Method. 1, 1 (Jan.), 21–52.

OSTERWEIL, L. J. AND FOSDICK, L. D. 1976. DAVE - a validation error detection and documentation
system for Fortran programs. Softw.–Prac. Exper. 6, 4 (Oct.–Dec.), 473–486.

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

430 • M. B. Dwyer et al.

PELED, D. 1998. Ten years of partial order reduction. In Proceedings of the 10th International
Conference on Computer-Aided Verification, A. J. Hu and M. Y. Vardi, Eds. Lecture Notes in
Computer Science, vol. 1427. 17–28.

RAMALINGAM, G. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst. 22, 2 (March), 416–430.

REPS, T. W., HORWITZ, S., AND SAGIV, S. 1995. Precise interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22nd ACM Symposium on Principles of Programming Lan-
guages. 49–61.

RYDER, B. G. 1974. The PFORT verifier. Softw.–Prac. Exper. 4, 4 (Oct.–Dec.), 359–377.
SALCIANU, A. AND RINARD, M. C. 2001. Pointer and escape analysis for multithreaded programs.

In Proceedings of the 2001 ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 12–23.

SCHMIDT, D. A. 1998. Data flow analysis is model checking of abstract interpretations. In Pro-
ceedings of the 25th ACM Symposium on Principles of Programming Languages. 38–48.

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION. 1997. Advanced interoperability technology de-
velopment: Investigating static data flow analysis for advanced distributed simulation verifica-
tion. Tech. rep., SAIC. (May).

SMITH, R. L., AVRUNIN, G. S., CLARKE, L. A., AND OSTERWEIL, L. J. 2002. Propel: An approach sup-
porting property elucidation. In Proceedings of the 24th International Conference on Software
Engineering. 11–21.

SPIVEY, J. M. 1992. The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall.
TAN, J., AVRUNIN, G. S., AND CLARKE, L. A. 2004. Heuristic-based model refinement for FLAVERS.

In Proceedings of the 26th International Conference on Software Engineering. 635–644.
TAN, J., AVRUNIN, G. S., CLARKE, L. A., ZILBERSTEIN, S., AND LEUE, S. 2004. Heuristic-guided coun-

terexample search in FLAVERS. In Proceedings of the 12th ACM SIGSOFT Symposium on the
Foundations of Software Engineering 201–210.

TAYLOR, R. N. 1983a. Complexity of analyzing the synchronization structure of concurrent pro-
grams. Acta Informat. 19, 1 (April), 57–84.

TAYLOR, R. N. 1983b. A general-purpose algorithm for analyzing concurrent programs. Comm.
ACM 26, 5 (May), 362–376.

TAYLOR, R. N., BELZ, F. C., CLARKE, L. A., OSTERWEIL, L. J., SELBY, R. W., WILEDEN, J. C., WOLF, A. L.,
AND YOUNG, M. 1988. Foundations for the Arcadia environment architecture. In Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments. 1–13.

VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S.-J. 2000. Model checking programs. In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering. 3–12.

YEH, W. J. AND YOUNG, M. 1991. Compositional reachability analysis using process algebra. In
Proceedings of the 1991 Symposium on Testing, Analysis, and Verification. 49–59.

YOUNG, M., TAYLOR, R. N., LEVINE, D. L., NIES, K. A., AND BRODBECK, D. 1995. A concurrency analysis
tool suite for Ada programs: Rational, design, and preliminary experience. ACM Trans. Softw.
Engin. Method. 4, 1 (Jan.), 65–106.

Received August 1999; revised January 2004; accepted August 2004

ACM Transactions on Software Engineering and Methodology, Vol. 13, No. 4, October 2004.

