Definition and Analysis of Election Processes

M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke and L. J. Osterweil University of Massachusetts, Amherst

Importance of Election Processes

- Election is the basis of democracy
- Some recent elections have been quite controversial
 - Thai election, Apr 2006
 - Azerbaijan election, 2005
 - Ukraine presidential election, 2004
 - US presidential elections
 - Ohio in 2004, Florida in 2000
- Related work and our focus

Relevance to Software Processes

- Election is an important process with many agents and complex details
- Process analysis techniques can be used to identify vulnerabilities like:
 - Process errors
 - Security violations due to mistakes, fraud, collusion etc.
- Demonstrates an important application of software process improvement to another domain

Our Approach and Tools

UNIVERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

Our Approach (cont..)

UNIVERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

The Election Process We Studied

- A simplified election process
 - One DRE machine every precinct
 - One position up for election
 - Two candidates (A and B)
- Creation of 'Statement of Results'
 - Two copies of SoR by two poll workers
- State level aggregation
 - Validation of precinct level reporting
 - Creation of statewide summary

The Election Process in LittleJIL

UNIVERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

Conduct of Election Process

Canvass of Election Process

Artifacts and Resources

Property Specification: An Example

- If two SoRs mismatch, the incorrect SoR gets detected and corrected before getting added to the Statewide Summary.
- Transition labels in the property FSA corresponds to events in the process

UNIVERSITY OF MASSACHUSETTS, AMHERST · Department of Computer Science

Process steps and property labels

Analysis of Frauds

- Model two different poll workers that perform 'Prepare SoR' step
 - One honest and one dishonest
- FLAVERS analyzer evaluates all possible traces through the process definition
 - Verifies if property holds in all traces
 - If not, produces a counterexample
- Need for automated analysis

Step through an analysis example

Step through an analysis example

Observations

- The described property verifies resistance to some fraudulent behaviors
 - Catches one honest and one dishonest
- This property will not detect two colluding poll workers for this process
- Need additional properties and/or a modified process
 - The process should now verify the existing and the additional property
- Incremental process improvement

Example of an Additional Property

- An SoR will never get added to the 'Statewide Summary' if it is different from the Machine_Total
- Catches frauds with two colluding poll workers
 - May require changes in the process
- The new process is verified against both the properties
 - Increased resistance to frauds

Conclusion

- There is more to election than just the voting machine
- No process will defend against all possible kinds of fraud
 - Needs to be guided by cost effectiveness
- Need a systematic study of process improvement
 - Our approach shows a promising direction
 - Demonstrates an important application of software process improvement to another domain

Future Work

- Model real world election processes
 - Likely to be large and complicated
 - Expected to have a lot of parallelism and exceptional flows
- Develop an ontology of election processes and fraudulent behaviors
- Identify most commonly occurring security vulnerabilities (fraud patterns)
 - Properties representing prevalent fraudulent behaviors
 - Pattern of resistant processes

Thank you!

UNIVERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

Extra Slide 0: Our Approach and Tools

- Develop a rigorous discipline of election process improvement:
 - Define an election process with appropriate level of details using LittleJIL
 - Add different (possibly malicious) agents
 - Define security policies using PROPEL
 - Properties that we want to be satisfied by an election process
 - Identify vulnerabilities using FLAVERS
 - Verify the properties or identify where in the process the properties fail
 - Improve the process or strengthen the property

Iterate

Extra Slide 0.1: Modeling Artifacts and Agents

- Artifact and resource information is attached to the step interfaces
- Artifact flow is bound to the edges
- Separation of coordination and computation
 - Agent behavior is orthogonal
 - For this study, agents have been modeled using Little-JIL

Extra Slides 1: A Dishonest Agent (Cont.)

Extra Slide 2: Agent Behavior (in Little-JIL)

UNIVERSITY OF MASSACHUSETTS, AMHERST • Department of Computer Science

Extra Slides 3: Tools and Techniques Used

- Use Little-JIL process language for modeling elections
 - Enrich the model with resource declarations and artifact definition and flow
 - Define agent behavior
- Model security properties using PROPEL
 - Properties as Finite State Automaton
- Verify the properties using FLAVERS analysis tool
- Iteratively change process and/or properties to improve election process

Extra Slide 4: Little-JIL Overview

- Visual coordination language
 - Rigorous semantics
- Hierarchical decomposition of tasks (steps)
- Rich exception handling with scoping
- Separation of Coordination and computation
 - Capability of defining agent behavior
- Declaration and flow definition of artifacts
- Orthogonal treatment of resource definitions
 - agents and other resources

Extra Slide 5: Little-JIL Step Structure

