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1. INTRODUCTION

Software systems are taking on an increasingly important role in society and are being
used in critical applications where their failure could result in human casualties or sub-
stantial economic loss. Thus, it is important to validate such software systems to ensure
their quality. This task is becoming more difficult, however, as software systems continue
to increase both in size and in complexity. There are many techniques that can be used to
validate software systems, one of which is finite-state verification (FSV). FSV techniques
work by analyzing a finite model of a system to ensure that it satisfies a property specify-
ing a desired system behavior. Since FSV techniques examine all paths through the system
model, they can be used to determine whether or not the property being verified is vio-
lated. If the property is violated, FSV techniques usually provide a counterexample, a path
through the model that reveals this violation. FSV techniques, however, are limited in the
size of the system that they can evaluate, since the cost of verification can be exponential
in the size of the system being verified; this is refered to as the state-explosion problem.

Compositional analysis techniques use a divide-and-conquer approach to verification in
an attempt to reduce the effects of the state-explosion problem. One of the most frequently
advocated compositional analysis techniques is assume-guarantee reasoning [Jones 1983;
Pnueli 1984] where a system under analysis is decomposed into subsystems and these sub-
systems are analyzed individually. By composing the results of these analyses, it can be
determined whether or not the whole system satisfies the original property. By individually
analyzing the subsystems, each of which is smaller than the whole system, the effects of
the state-explosion problem may be reduced. Often the behavior of a subsystem is depen-
dent on the subsystems with which it interacts, and thus it is usually necessary to provide
assumptions about the environment in which a subsystem executes to verify properties of
that subsystem.

In assume-guarantee reasoning, a verification problem is represented as a triple,
〈A〉 S 〈P〉, where:

(1) S is the subsystem being analyzed,
(2) P is the property to be verified, and
(3) A is an assumption about the environment in which S is used.

Note that although this notation resembles a Hoare triple [Hoare 1969], A is not a precon-
dition and P is not a postcondition. Instead, A is a constraint on the behavior of S. If S, as
constrained by A, satisfies P, then the formula 〈A〉 S 〈P〉 is true.

Consider a system that is decomposed into two subsystems, S1 and S2. To verify that a
property P holds on the system composed of S1 and S2 running in parallel, denoted S1 ‖ S2,
the following is the simplest assume-guarantee rule that can be used:

Premise 1: 〈A〉 S1 〈P〉
Premise 2: 〈true〉 S2 〈A〉

〈true〉 S1 ‖ S2 〈P〉
This rule states that if under assumption A subsystem S1 satisfies property P and subsystem
S2 satisfies an assumption A, then the system S1 ‖ S2 satisfies property P. This allows a
property to be verified on S1 ‖ S2 without ever having to examine a monolithic model for
the entire system.

There are several issues that make using this assume-guarantee rule difficult. First, if
the system under analysis is made up of more than two subsystems, which is often the
ACM Journal Name, Vol. V, No. N, November 2007.



Breaking Up is Hard to Do · 3

case, then S1 and S2 may each need to be made up of several of these subsystems. How
this decomposition is done can have a significant impact on the time and memory needed
for verification, but it is not clear how to select an effective decomposition. In fact, we
have found that the memory usage between two different decompositions can vary by over
an order of magnitude. Second, once a decomposition is selected, it can be difficult to
manually find an assumption A that can be used to complete an assume-guarantee proof
because the assumption must:

(1) be strong enough to sufficiently constrain the behavior of S1 so that 〈A〉 S1 〈P〉 holds,
and

(2) be weak enough so that 〈true〉 S2 〈A〉 holds.

Because selecting a decomposition and developing an assumption are difficult tasks, it had
not been practical previously to undertake an empirical evaluation of assume-guarantee
reasoning, although several case studies have been reported (e.g., [Henzinger et al. 1998;
McMillan 1998; Fournet et al. 2004]).

Recent work on automatically computing assumptions for assume-guarantee reason-
ing [Giannakopoulou et al. 2002; Barringer et al. 2003; Cobleigh et al. 2003; Henzinger
et al. 2003; Alur et al. 2005; Chaki et al. 2005] eliminates one of the obstacles to empiri-
cal evaluation by making it feasible to examine a large number of decompositions without
having to manually produce a suitable assumption for each one. Using one algorithm that
learns assumptions [Cobleigh et al. 2003], we undertook a study to evaluate the effective-
ness of assume-guarantee reasoning.

We first conducted a preliminary study to gain insight into how to best decompose sys-
tems and to learn what kind of savings could be expected from assume-guarantee reason-
ing. We began by using the FLAVERS FSV tool [Dwyer et al. 2004] to verify proper-
ties of several systems written in Ada, but the results of these experiments were not as
promising as the results seen in Cobleigh et al. [2003], which applied LTSA [Magee and
Kramer 1999], another FSV tool, to a single system derived from a C++ program. Al-
though FLAVERS and LTSA use different models and verification methods, this discrep-
ancy was surprising to us. As a result, we also translated the Ada systems into the input
language of LTSA, to see if our choice of tool affected our results. Using both FSV tools,
we selected several decompositions for each example at the smallest reasonable system
size based on our understanding of the system, the property, and assume-guarantee rea-
soning. We expected that in most cases assume-guarantee reasoning would save memory
over monolithic verification. In this study, we were surprised to discover that in over half
of the subjects we verified, the decompositions we selected did not use less memory than
monolithic verification, regardless of the verifier used.

Based on the results of this preliminary study, we undertook the more comprehensive
study that is reported in this paper. We started by looking at the smallest size of each
of our example systems. For each system, property, and verifier, we found the best de-
composition, in the sense that assume-guarantee reasoning explores the fewest states, by
examining all of the ways to decompose that system into S1 and S2. Then, because ex-
amining all decompositions at larger system sizes quickly becomes infeasible due to the
explosion in the number of decompositions that need to be considered and the increased
cost for evaluating each decomposition, we generalized the best decompositions found for
smaller system sizes and used those generalized decompositions when applying assume-
guarantee reasoning on larger system sizes. To evaluate these generalized decompositions
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we tried to explore all two-way decompositions for a few larger system sizes, although we
were not always able to find the best decomposition because of the time required. In total
we examined over 43,500 two-way decompositions, which used over 1.54 years of CPU
time.

The results of our experiments are not very encouraging and raise concerns about the ef-
fectiveness of assume-guarantee reasoning. For the vast majority of decompositions, more
states are explored using assume-guarantee reasoning than are explored using monolithic
verification. If we restrict our attention to just the best decomposition for each property,
we found that in about half of these cases our automated assume-guarantee reasoning tech-
nique explores fewer states than monolithic verification for the smallest system size. When
we used generalized decompositions to scale the systems, assume-guarantee reasoning of-
ten explores fewer states than monolithic verification. This memory savings, however, is
rarely enough to increase the size of the systems that can be verified beyond what can be
done with monolithic verification. Although these results are discouraging, they provide
insight about research directions that should be pursued and highlight the importance of
experimental evaluation for this area.

Section 2 provides some background information about the finite-state verifiers and the
automated assume-guarantee algorithm we used. Section 3 describes the automated as-
sumption generation algorithms for FLAVERS and for LTSA. Section 4 describes our ex-
perimental methodology and results. Section 5 discusses related work. We end by present-
ing our conclusions and discussing future work.

2. BACKGROUND

This section gives a brief description of FLAVERS and LTSA, the two FSV tools used
in our experiments. It also briefly describes the L* algorithm and how it can be used to
automatically learn assumptions for use in assume-guarantee reasoning.

2.1 FLAVERS

FLAVERS (FLow Analysis for VERification of Systems) [Dwyer et al. 2004] is an FSV
tool that can prove user-specified properties of sequential and concurrent systems. These
properties need to be expressed as sequences of events that should (or should not) happen
on any execution of the system. A property can be expressed in a number of different nota-
tions, but must be translatable into a Finite State Automaton (FSA). The model FLAVERS
uses to represent a system is based on annotated Control Flow Graphs (CFGs). Annota-
tions are placed on nodes of the CFGs to represent events that occur during execution of
the actions associated with a node. Since a CFG represents the potential control flow of a
sequential system, this representation is not sufficient for modeling a concurrent system.
FLAVERS uses a Trace Flow Graph (TFG) to represent a concurrent system. The TFG
consists of a collection of CFGs, with each CFG representing a task in the system, and with
additional nodes and edges to represent potential intertask control flow. Typically a CFG,
and thus a TFG, over-approximates the sequences of events that can occur when executing
a system.

FLAVERS uses an efficient state-propagation algorithm [Olender and Osterweil 1992;
Dwyer et al. 2004] to determine whether all potential behaviors of the system being ana-
lyzed are consistent with the property being verified. FLAVERS analyses are conservative,
meaning FLAVERS will only report that the property holds when the property holds for all
TFG paths. If FLAVERS reports that the property does not hold, this may be because at
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least one of the violating traces through the TFG corresponds to an actual execution of the
system, and thus there is an error in the system, in the property, or in both. Alternatively,
the property may only be violated on infeasible paths, which are paths that do not corre-
spond to any possible execution of the system but are an artifact of the imprecision of the
model. The analyst can then introduce constraints, also represented as FSAs, to improve
the precision of the model and thereby eliminate some infeasible paths from consideration.
An analyst might need to iteratively add constraints and observe the analysis results several
times before determining whether or not a property holds. Constraints give analysts some
control over the analysis process by letting them determine exactly which parts of a system
need to be modeled to prove a property.

The FLAVERS state-propagation algorithm has worst-case complexity that is
O

(
N2 ·P ·C1 · · ·Ck

)
, where N is the number of nodes in the TFG, P is the number of

states in the property, and Ci is the number of states in the ith constraint. Experimen-
tal evidence shows that the performance of FLAVERS is often sub-cubic in the size of the
system [Dwyer et al. 2004] and that the performance of FLAVERS is good when compared
to other finite-state verifiers [Avrunin et al. 1999; Avrunin et al. 2000].

2.2 LTSA

LTSA (Labeled Transition Systems Analyzer) [Magee and Kramer 1999] is another FSV
tool that can prove user-specified properties of sequential and concurrent systems. LTSA
can check both safety and liveness properties, but the assume-guarantee algorithm we used
could only handle safety properties. Safety properties in LTSA are specified as FSAs where
every state except one is an accepting state. This single non-accepting state must be a trap
state, meaning it has no transitions to other states. This type of FSA corresponds to the set
of prefix-closed regular languages, those languages where every prefix of every string in
the language is also in the language. LTSA uses Labeled Transition Systems (LTSs), which
resemble FSAs, for modeling the components of a system. In LTSA, LTSs are written in
Finite State Process (FSP), a process-algebra style notation [Magee and Kramer 1999].

Unlike FLAVERS, in which the nodes of the model are labeled with the events of inter-
est, in LTSA, the edges (or transitions) of the LTSs are labeled with the events of interest.
To build a model of the entire system, individual LTSs are combined using the parallel
composition operator (‖). The parallel composition operator is a commutative and associa-
tive operator that combines the behavior of two LTSs by synchronizing the events common
to both and interleaving the remaining events. LTSA uses reachability analysis to verify a
property and has a worst-case complexity that is O(N1 · · ·Nk ·P) where Ni is the number of
states in the ith LTS in the system and P is the number of states in the property.

2.3 Using the L* Algorithm to Automate Assume-guarantee Reasoning

The L* algorithm was originally developed by Angluin [1987] and later improved by
Rivest and Schapire [1993]. In our work, we used Rivest and Schapire’s version of the
L* algorithm. The L* algorithm learns an FSA for an unknown regular language over an
alphabet Σ by interacting with a minimally adequate teacher, henceforth referred to as a
teacher. The L* algorithm poses two kinds of questions to the teacher, queries and con-
jectures, where the questions posed are based on the answers received to previously asked
questions. For assume-guarantee reasoning, the L* algorithm is used to learn an FSA
that recognizes the language of the weakest possible assumption under which S1 satisfies
P [Giannakopoulou et al. 2002]. The weakest possible assumption is unique, assuming it
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has been minimized to ensure a canonical representation [Giannakopoulou et al. 2002]. For
an assumption A, let L (A) denote the language of that assumption. The weakest possible
assumption Aw is an assumption for which

(1) 〈Aw〉 S1 〈P〉 is true and
(2) ∀A such that L (A)⊃L (Aw),〈A〉 S1 〈P〉 is false.

We refer the reader to Rivest and Schapire [1993] for a description of the L* algorithm
itself and here only describe how queries and conjectures are answered to allow the L*
algorithm to learn an assumption A that can be used in the simple assume-guarantee rule
given earlier.

2.3.1 Answering Queries. A query consists of a sequence of events from Σ∗ where the
teacher must return true if the string is in the language being learned and false otherwise. In
answering queries for assume-guarantee reasoning, the focus is on Premise 1, 〈A〉 S1 〈P〉.
To answer a query, the model of S1 is examined to determine if the given event sequence
results in a violation of the property P. If it does, then the assumption needed to make
〈A〉 S1 〈P〉 true should not allow the event sequence in the query, and thus false will be
returned to the L* algorithm. Otherwise, the event sequence is permissible and true will
be returned to the L* algorithm.

2.3.2 Answering Conjectures. A conjecture consists of an FSA that the L* algorithm
believes will recognize the language being learned. The teacher must return true if the
conjecture is correct. Otherwise, the teacher must return false and a counterexample, a
string in Σ∗ that is in the symmetric difference of the language of the conjectured automa-
ton and the language being learned. In the context of assume-guarantee reasoning, the
conjectured FSA is a candidate assumption that may be able to be used to complete an
assume-guarantee proof. Thus, conjectures are answered by determining if the conjectured
assumption makes the two premises of the assume-guarantee proof rule true.

To answer a conjecture, the candidate assumption, A, is first checked to see if it satisfies
Premise 1. To check this, the model of S1, as constrained by the assumption A, is verified.
If this verification reports that P does not hold, then the counterexample returned represents
an event sequence permitted by A that can cause S1 to violate P. Thus, the conjecture is
incorrect and the counterexample is returned to the L* algorithm. If the verification reports
that the property does hold, then A is good enough to satisfy Premise 1 and Premise 2 can
be checked.

Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this, the model for S2 is
verified to see if it satisfies A. If this verification reports that A holds, then both Premise 1
and Premise 2 are true, so it can be concluded that P holds on S1 ‖ S2 and the automated
assume-guarantee reasoning algorithm can stop. If this verification reports that A does not
hold, then the resulting counterexample is examined to determine what should be done
next.

The first thing considered is to make a query to see if the event sequence of the coun-
terexample leads to a violation of the property P on S1. If a property violation results, then
the counterexample is a behavior that occurs in S2 that can result in a property violation
when S2 interacts with S1, so it can be concluded that P does not hold on S1 ‖ S2 and the
automated assume-guarantee reasoning algorithm can stop. If a property violation does
not occur, then the counterexample is a behavior that occurs in S2 that will not result in a
property violation when S2 interacts with S1, and thus A is saying that certain behaviors
ACM Journal Name, Vol. V, No. N, November 2007.
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of S2 are illegal when they actually are legal. Thus, the assumption A is incorrect and the
counterexample is then returned to the L* algorithm in response to the conjecture.

Note that Premise 1 is checked before Premise 2 because doing so allows the algorithm
to answer the conjecture immediately if Premise 1 is false. If Premise 2 were checked first
and the result were false, a query would still need to be made before the conjecture could
be answered. Thus, we chose to check Premise 1 in an attempt to make the algorithm more
efficient.

2.3.3 Complexity and Correctness. This approach to assume-guarantee reasoning ter-
minates and correctly determines whether or not S1 ‖ S2 satisfies P [Cobleigh et al. 2003].

Using Rivest and Schapire’s version of the L* algorithm, l−1 conjectures and
O

(
kl2 + l logm

)
queries are needed in the worst case, where k is the size of the alpha-

bet of the FSA being learned, l is the number of states in the minimal deterministic FSA
that recognizes the language being learned, and m is the length of the longest counterex-
ample returned when a conjecture is made. Since we are using an FSV tool to generate
counterexamples, we are guaranteed that there will be a finite number of states explored
during analysis. The maximum number of states explored provides an upper bound on the
length of the longest counterexample. In our experience, counterexamples are significantly
shorter than this worst-case upper bound.

Although this approach to assume-guarantee reasoning is correct and will terminate, it
is not guaranteed to save memory over monolithic verification. When the L* algorithm is
learning an assumption A to make Premise 1 true, it might learn an assumption that has
fewer states than S2 but that allows behaviors that do not occur in S2. As a result, the
composition of S1 and A could have more behaviors than the composition of S1 and S2.
This would likely lead to the size of S1 ‖ S2 being larger then the size of S1 ‖ A, and result
in the verification of Premise 1 using more memory than monolithic verification.

Additionally, while the learned assumption is expected to be smaller than S2, it is often
larger than the property P. As a result, checking Premise 2 may use more memory than
monolithic verification.

Finally, this approach is also not guaranteed to save time since there is additional over-
head for learning an assumption.

3. IMPLEMENTING THE TEACHERS

The teacher, as described at a high level in Section 2.3, works for both FLAVERS and
LTSA. The LTSA teacher, which was used as the basis for the teacher for FLAVERS, is
described in detail in Cobleigh et al. [2003]. Differences in the models used by FLAVERS
and LTSA, however, necessitate differences in the implementations of their teachers. In
this section, we focus on the most significant difference between the two teachers, which is
how the models for S1 and S2 are built. A detailed description of the teacher for FLAVERS
is given in the Appendix.

The systems used in our experiments are written in Ada, which uses rendezvous for
intertask communication. Consider a system made up of two tasks, T1 and T2 and let
S1 = {T1} and S2 = {T2}. Suppose that T1 and T2 communicate via a rendezvous “r” that
is accepted once by T1 and called once by T2.

In LTSA, this rendezvous is represented by two transitions, one in the LTS for T1 and
one in the LTS for T2, that are labeled with the same event. In the LTS model, when an LTS
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is in a given state, only events on enabled transitions can occur. A transition with event e
is enabled if:

(1) e is τ , where τ represents an action that is invisible to the environment of the LTS,

(2) e is not in the alphabet of any other LTSs, or

(3) e occurs in other LTSs and e is on a transition out of the current state of every other
LTS that has e in its alphabet.

Thus, when building the model for S1, the event that corresponds to the rendezvous “r”
would always be enabled since there are no other LTSs in S1 that have “r” in their alphabets.
Although T2 also has “r” in its alphabet, T2 is in S2, not S1.

In FLAVERS, this rendezvous is represented by two nodes, one in the CFG for T1,
annotated as accepting the rendezvous “r”, and one in the CFG for T2, annotated as calling
the rendezvous “r”. For monolithic verification, when the TFG is built from CFGs for T1
and T2, these two nodes are replaced by a single node that represents the occurrence of the
rendezvous “r”. If a model for S1 is built using just the CFG for T1, FLAVERS removes
the node that corresponds to the accept of “r” because there is no node in the collection of
CFGs that makes up S1 that calls “r”. As a result, any transitions in a property that would
be taken when the rendezvous “r” occurs will never be taken because the rendezvous “r”
would not be in the model. Thus, to accurately model S1, we need to add an environment
task that captures the interaction between tasks in S1 and tasks in S2. A similar environment
needs to be built when constructing the model for S2. Although tools exist for building
environments for model checking software systems [Tkachuk et al. 2003], we do not use
such tools since the environment generation problem in our context is not very complicated.
For FLAVERS, we build an environment automatically after a simple analysis of the nodes
in the CFGs of the system, as described in detail in the Appendix.

The way these environments are generated can affect the memory and time needed to
check properties for assume-guarantee reasoning. Păsăreanu et al. [1999] looked at two
approaches to environment generation. The first approach is to generate a universal en-
vironment and have its actions constrained by the assumption A. The second approach
is to convert the assumption A into an environment that only allows the sequences of ac-
tions permitted by the assumption. Their experiments used SPIN and SMV and produced
inconclusive results since neither approach for environment generation outperformed the
other approach consistently. We used the first approach in our study. That is, we generated
a universal environment and constrained it with an assumption. We chose this approach
because it allows better reuse of artifacts, since the TFG does not need to be regenerated
for each conjecture. In Section 4.7, we discuss how this decision and others made in model
and assumption construction might have influenced our experimental results.

4. METHODOLOGY AND RESULTS

There are several questions that could be asked to determine whether or not assume-
guarantee reasoning provides an advantage over monolithic FSV. Since FSV techniques
are more frequently limited by memory than by time, we primarily focused our study on
the following two questions:

(1) Does assume-guarantee reasoning use less memory than monolithic verification?
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(2) If assume-guarantee reasoning uses less memory than monolithic verification, is there
enough savings to allow assume-guarantee reasoning to verify properties on larger
systems than monolithic verification?

To evaluate the usefulness of this automated assume-guarantee reasoning technique, we
tried to verify properties that were known to hold on a small set of scalable systems: the Ch-
iron user interface system [Keller et al. 1991] (both the single and the multiple dispatcher
versions as described in Avrunin et al. [1999]), the Gas Station problem [Helmbold and
Luckham 1985], Peterson’s mutual exclusion protocol [Peterson 1981], the Relay prob-
lem [Siegel and Avrunin 2002], and the Smokers problem [Patil 1971]. These systems
were specified in Ada and use rendezvous for intertask communication. Except for Peter-
son’s mutual exclusion protocol, which uses shared variables for intertask communication,
these systems all have a client-server architecture where the server has an interface made
up of a small number of rendezvous that may be called by the clients. The properties we
checked on these systems are all safety properties that describe a legal (or illegal) sequence
of events for each system and are given in Table I. Since our experiments examined the
same properties on two different versions of the Chiron system, we use the term subject
to refer to a property-system pair. Table I gives the subject number for each subject in the
experiment. For the Chiron properties, two subject numbers are given, the one before the
slash is for the subject in the single dispatcher system (henceforth referred to as “Chiron
single”) and the one after the slash is for the subject in the multiple dispatcher system
(henceforth referred to as “Chiron multiple”).

Each of the systems we used was scaled by creating more instances of one particular
task, and the size of the system is measured by counting the number of occurrences of that
task in the system. For the Chiron systems we counted the number of artists, for the Gas
Station system we counted the number of customers, for the Peterson system we counted
the number of tasks trying to gain access to the critical section, for the Relay system we
counted the number of tasks accessing the shared variable, and for the Smokers system
we counted the number of smokers. For each of the systems we looked at, we tried to
verify properties starting at the smallest size and increasing the size up to a maximum size
of 200. The somewhat arbitrary cutoff of 200 represents a significant size for the systems
under consideration and provides substantial information about how the verification of
that subject scales. While systems could be constructed for which some property holds at
size 200 but not at size 201, for the systems we examined, verifying properties at size 200
provides high confidence that the properties will hold at even larger sizes.

For both FLAVERS and LTSA we considered a task to be an indivisible subsystem.
Thus, a decomposition is an assignment of the tasks to either S1 or S2. Note that each
scalable system we looked at had more than two subsystems (i.e., tasks), even at size 2.

Both FLAVERS and LTSA prove that a property holds by exploring all of the reachable
states in an abstracted model of a system. On properties that do not hold, these two tools
stop as soon as a property violation is found. As a result, their performance on properties
that do not hold is more variable. Although using only properties that hold restricts the
scope of our study, including properties that do not hold would have made it more difficult
to meaningfully compare the performance of monolithic verification to assume-guarantee
reasoning.

To determine the amount of memory used by monolithic verification, we counted the
number of states explored during verification. While the artifacts created by the verifiers
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Table I. Description of the properties
Subject

Number(s) Property Description

Chiron
1 / 10 artist1 never registers for event1 if it is already registered for this event.
2 / 11 If artist1 is registered for event1 and the dispatcher receives event1, then the dispatcher will

not accept another event before passing event1 to artist1.
3 / 12 The dispatcher does not notify any artists of event1 until it receives event1.
4 / 13 Having received event1, the dispatcher never notifies artists of event2.
5 / 14 If no artists are registered for event1, the dispatcher does not notify any artist of event1.
6 / 15 The dispatcher never gives event1 to artist1 if artist1 is not registered for event1.
7 / 16 If artist1 registers for event1 before artist2 does, then when the dispatcher receives event1 it

will first notify artist1 and then artist2 of this event.
8 / 17 The size of the list used to store the IDs of artists registered for event1 never exceeds the

number of artists.
9 / 18 The program does not terminate while there is an artist that is registered for an event.

Gas Station
19 customer1 and customer2 cannot use pump1 at the same time.
20 customer1 repeatedly first starts pumping and then stops pumping.
21 pump1 repeatedly lets a customer start pumping and then lets a customer stop pumping.
22 If customer1 prepays on pump1, then customer1 receives the change for pump1.

Peterson
23 Two tasks cannot both be in the critical region at the same time.

Relay
24 The shared variable is always set to 1 between any two times it is set to 0.

Smokers
25 The correct smoker makes a cigarette after the supplier finishes putting out pieces.
26 smoker1 assembles a cigarette after the supplier puts out the needed pieces.
27 Only one smoker can be making a cigarette at a time.
28 smoker1 and smoker2 cannot be making a cigarette at the same time.
29 The supplier never puts all of the pieces for a cigarette on the table at the same time.
30 After the supplier puts out items, one cigarette will be assembled.
31 Repeatedly, piece1 is put on the table (by the supplier) and then piece1 is picked up from the

table (by a smoker).
32 The supplier and the smokers must first obtain a mutual exclusion lock before putting items

on or taking items off the table and then they must release the lock

(e.g. TFGs and FSAs in FLAVERS, LTSs in LTSA) use memory, we did not count them
when determining memory usage since the amount of memory needed to store them is usu-
ally small when compared to the amount of memory needed to store the states explored dur-
ing verification. Similarly, to determine the amount of memory used by assume-guarantee
reasoning, we looked at the maximum number of states explored by the teacher when an-
swering a query or a conjecture of the L* algorithm. We consider one decomposition better
than another decomposition if the maximum number of states explored when the teacher
answers a query or conjecture using the first decomposition is smaller than the maximum
number of states explored when the teacher answers a query or conjecture using the second
decomposition.
ACM Journal Name, Vol. V, No. N, November 2007.
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Table II. Number of two-way decompositions examined for systems of size 2
FLAVERS LTSA

System Decompositions Properties Total Properties Total

Chiron single 62 9 558 8 496
Chiron multiple 254 9 2,286 8 2,032
Gas Station 30 4 120 4 120
Peterson 6 1 6 1 6
Relay 6 1 6 1 6
Smokers 14 8 112 8 112

Total 32 3,088 30 2,772

For LTSA, INCA [Corbett and Avrunin 1995] was used to translate the Ada systems into
FSAs, which are then easily translated into LTSs. There is one fewer Chiron property for
LTSA than for FLAVERS. This property is shown to hold during model construction by
INCA for LTSA, making verification using LTSA unnecessary. Because this property is
applicable to each version of the Chiron system, there are two more subjects for FLAVERS
than for LTSA, namely subjects 8 and 17.

We did not use the most recent version of LTSA, which is based on plugins [Chatley
et al. 2004], because the plugin interface does not provide direct access to the LTSs. An
implementation of the assumption-generation technique we used exists for the plugin ver-
sion of LTSA [Giannakopoulou and Păsăreanu 2005], but verification takes significantly
longer because all LTSs must be created by writing appropriate FSP, necessitating parsing
the entire model for each query and conjecture, even for the parts of the model that do not
change between different queries and conjectures.

We used the version of FLAVERS that directly accepts Ada systems. Since FLAVERS
uses constraints to control the amount of precision in a verification, we used a minimal
set of constraints when verifying properties. A minimal set of constraints is one that al-
lows FLAVERS to verify that the property holds but also one where the removal of any
constraint causes FLAVERS to report that the property may not hold.2

Tables with the details of our experimental results (e.g., the size of the learned assump-
tions and the number of states explored during verification) can be found in the Electronic
Appendix for this paper. Also, all of our experimental subjects can be downloaded from:

http://laser.cs.umass.edu/∼jcobleig/breakingup-examples/

4.1 Does Assume-guarantee Reasoning Save Memory for Small System Sizes?

We began by looking at systems of size 2, the smallest reasonable size for all of the sys-
tems. For each subject in our study at size 2, we examined all two-way decompositions to
find the best decomposition for that subject with respect to memory. For each systems at
size 2, Table II lists the number of two-way decompositions3 examined for each subject,

2While these sets are minimal for each property, they may not be the smallest possible set of constraints with
which FLAVERS can prove the property holds nor the best set with respect to the memory or time cost. While
the worst-case complexity of FLAVERS increases with each constraint that is added, sometimes adding more
constraints can improve the actual performance of FLAVERS. Since we did not consider all possible combinations
of all possible constraints, we can not be certain that the selected minimal constraint set is either the smallest
minimal set or the set that uses the least time or memory. On the other hand, a “reasonable” process that might be
applied by analysts, described in Dwyer et al. [2004], was used to select the sets of constraints used in our study.
3Note that the number of two-way decompositions examined for each subject is always two fewer than a power
of two because the two-way decompositions where either S1 or S2 is empty are not checked.
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Fig. 1. Memory used by the best decomposition of size 2 for FLAVERS
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Fig. 2. Memory used by the best decomposition of size 2 for LTSA

the number of properties for each system, and the total number of decompositions exam-
ined for each system. Note that the Chiron multiple system has more decompositions than
the Chiron single system because the changes made to the dispatcher resulted in a system
with more tasks.

Figures 1 and 2 show, for FLAVERS and LTSA respectively, the amount of memory used
by the best decomposition at size 2 normalized by dividing it by the amount of memory
used by monolithic verification. For reference, a line at 1.0 has been drawn. Bars whose
heights do not reach this line represent subjects on which the best decomposition is better
than monolithic verification, while bars whose heights extend above this line represent
subjects on which the best decomposition is worse than monolithic verification. Note that
the subjects are ordered by their normalized memory usage and that the vertical axes are
ACM Journal Name, Vol. V, No. N, November 2007.
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Table III. Percentage of decompositions worse than monolithic verification at size 2
FLAVERS LTSA

System Decompositions Percentage Decompositions Percentage
Chiron single 558 96% 496 88%

Chiron multiple 2,286 87% 2,032 88%
Gas Station 120 66% 120 100%

Peterson 6 100% 6 100%
Relay 6 50% 6 83%

Smokers 112 100% 112 100%

Overall 3,088 89% 2,772 89%

logarithmic. The subject numbers are given on the x-axis so that the reader can compare
the performance of the two verifiers for a given subject.

For FLAVERS, the best decomposition is better than monolithic verification on 17 of the
32 subjects. For these 17 subjects, on average the best decomposition uses 48.5% of the
memory used by monolithic verification. For the 15 subjects where the best decomposition
is worse than monolithic verification, on average the best decomposition uses 654.1% of
the memory used by monolithic verification.

For LTSA, the best decomposition is better than monolithic verification on 17 of the
30 subjects. For these 17 subjects, on average the best decomposition uses 33.6% of the
memory used by monolithic verification. For the 13 subjects where the best decomposition
is worse than monolithic verification, on average the best decomposition uses 281.7% of
the memory used by monolithic verification.

While there are 17 subjects on which assume-guarantee reasoning is better than mono-
lithic for both FLAVERS and LTSA, these are not exactly the same 17 subjects. There are
a total of 12 subjects for which the assume-guarantee approach is better than monolithic
verification for both verifiers. Interestingly, the subject on which assume-guarantee rea-
soning with FLAVERS saves the most memory is a subject on which assume-guarantee
reasoning with LTSA does not save memory compared to monolithic verification.

While Figures 1 and 2 show the results for the best decompositions at size 2, it is im-
portant to note that the vast majority of decompositions are not better than monolithic ver-
ification. Table III shows the percentage of decompositions that are worse than monolithic
verification for each system and verifier. For reference, it also gives the total of number of
decompositions examined with each verifier for each system.

Overall, with both FLAVERS and LTSA, 89% of the decompositions are worse than
monolithic verification. For FLAVERS, there are two systems where these percentages
are better than 80%: namely 66% for the Gas station system and 50% for the Relay sys-
tem. Even if we only consider those subjects for which there exists a decomposition where
assume-guarantee uses less memory than monolithic verification, then these percentages
remain basically the same except for the Chiron single system with FLAVERS. On this
system the percentage of decompositions that are worse than monolithic verification goes
from 96% to 87%. Thus, randomly selecting decompositions would likely not yield a
decomposition better than monolithic verification. Furthermore, our intuition on how to
select decompositions was not good. Even for the subjects for which there is some decom-
position that does save memory, in our preliminary study the decompositions we thought
would save memory usually did not. While it might be possible to develop heuristics to
aid in finding such a decomposition, when we examined the decompositions that saved
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—For each non-repeatable task, put the task into S1 if the task was put into S1 in the best decomposition at size 2.
Otherwise, put the task into S2.

—For each repeatable task:
—If the best decomposition for size 2 had both repeatable tasks in S1, put the repeatable task in S1.
—If the best decomposition for size 2 had both repeatable tasks in S2, put the repeatable task in S2.
—If the best decomposition for size 2 had one of the repeatable tasks in S1 and the other in S2, look to see if

the property treated one of the repeatable tasks in a different way than all the other repeatable tasks.
—If the property treats all of the repeatable tasks the same, then:

—If this repeatable task is the repeatable task with the smallest ID, put this repeatable task into S1 if the
repeatable task with the smallest ID was put into S1 in the best decomposition at size 2. Otherwise, put
this repeatable task into S2.

—If this repeatable task is not the repeatable task with the smallest ID, put this repeatable task into S2 if
the repeatable task with the smallest ID was put into S2 in the best decomposition at size 2. Otherwise,
put this repeatable task into S1.

—If the property treats one of the repeatable tasks different than the other repeatable tasks, then:
—If this repeatable task is the one that is treated differently, then put this repeatable task into S1 if its

corresponding task in the best decomposition at size 2 was put into S1. Otherwise, put this task into S2.
—If this repeatable task is not the one that is treated differently, then put this repeatable task into S1 if the

repeatable task that is treated differently was in S2 on the best decomposition at size 2. Otherwise, put
this task into S1.

—If the property treats two of the repeatable tasks different than other repeatable tasks, then handle the tasks
treated in a different way as in the “one” case above and handle the tasks that are not treated in a different
way as in the “all” case above.

Fig. 3. Process for generalizing decompositions

memory in our experiments, we did not see any patterns that could be used as the basis for
such heuristics.

4.2 Does Assume-guarantee Reasoning Save Memory for Larger System Sizes?

Although assume-guarantee reasoning using learned assumptions saves memory in only
about half of the subjects we looked at when the best decomposition is used and finding
these best decompositions was expensive, the overall approach was not too onerous. Once
the models were built for size-2 systems, on average it required about two minutes to ex-
amine one decomposition with FLAVERS and about half a minute to examine one decom-
position with LTSA. For larger size systems, however, it would be infeasible to evaluate
all two-way decompositions because the number of decompositions to be evaluated in-
creases exponentially and the cost of evaluating each decomposition increases as well. For
example, we have several instances where evaluating a single decomposition on a system
of size 4 takes over 1 month. Thus, if memory is a concern in verifying a property on a
system and if it is important to verify it for a larger size, a reasonable approach might be to
examine all decompositions for a small system size and then to generalize the best decom-
position for that small system size to a larger system size. In this study, we used just such a
generalization approach to evaluate the memory usage of assume-guarantee reasoning for
larger system sizes.

Our algorithm for generalizing decompositions from the best decomposition for size 2
is shown in Figure 3. We also considered several other heuristics and discuss them in
Section 4.7. At a high level, this algorithm assigns each task into one of two categories,
either a task is repeatable (e.g., a customer task in the gas station system) or non-repeatable
(e.g., all non-customer tasks in the gas station system). A task, whether repeatable or not,
ACM Journal Name, Vol. V, No. N, November 2007.



Breaking Up is Hard to Do · 15

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

● ●
● ●

●

●

●

●
●

●
● ● ● ●

●

●

●

●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●
●

●

●
●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

●●●

●

●

●

●

●
●

●
●

●

2 4 6 8 10

0.01

0.05

0.10

0.50

1.00

5.00

10.00

System Size

N
or

m
al

iz
ed

 M
em

or
y 

U
sa

ge

Fig. 4. Memory used by the generalized decompositions for FLAVERS up to size 10

is put in S1 (S2) if the best decomposition has the corresponding task in S1 (S2). For a larger
size system, some tasks are repeated; since these added tasks do not have a corresponding
task in the best decomposition at size 2, a heuristic is used to determining whether each
should be put in S1 or S2. This heuristic is based on the subsystems the repeatable tasks are
in for the best decomposition at size 2 and whether or not the property treats the repeatable
tasks in a different way from other tasks. For example, using the properties in Table I,
subject 8 treats all of the repeatable tasks the same, subject 1 treats one of the repeatable
tasks (artist1) different than the other repeatable tasks, and subject 28 treats two of the
repeatable tasks (smoker1 and smoker2) different than the other repeatable tasks.

Figures 4, 5, and 6 show, as the system size increases, the amount of memory used by
assume-guarantee reasoning with generalized decompositions normalized by dividing by
the amount of memory used by monolithic verification of the same subject at the same
system size. Each solid line represents a single subject. A dotted line at 1.0 has been
provided for reference. Figures 4 and 5 show data for FLAVERS. The former shows the
data for system sizes less than or equal to 10 while the latter shows the data for only those
subjects that could scale above size 10. Note that each line in Figure 5 corresponds to a line
that is shown in Figure 4. The two lines in Figure 5 that have data at size 50 correspond
to subjects where we actually have data up to size 200. The slopes of the lines for these
two subjects do not change significantly above size 50, however. Thus, we have chosen
to not show data above size 50 so that details at the smaller sizes can be seen more easily.
Figure 6 shows all of the data for LTSA. For 8 subjects with FLAVERS and 3 subjects with
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Fig. 5. Memory used by the generalized decompositions for FLAVERS for just those subjects where the largest
system size that could be verified is greater than 10

LTSA there are single points at size 2. On these subjects, the generalized decompositions
run out of memory at size 3. Note that each line stops at the largest system size on which
both monolithic verification and assume-guarantee reasoning can verify the corresponding
subject. For some subjects either assume-guarantee reasoning or monolithic verification
can verify that subject at even larger sizes.

With FLAVERS, if the best decomposition at size 2 is better than monolithic verifica-
tion, the associated generalized decompositions are usually better than monolithic verifi-
cation, as seen with 16 of the 17 such subjects. There are 2 subjects on which the best
decomposition at size 2 is worse than monolithic verification, but the generalized decom-
position is better than monolithic verification at the largest size such a comparison could
be made. Thus, with FLAVERS assume-guarantee reasoning using generalized decompo-
sition is better than monolithic verification on 18 of the 32 subjects.

With LTSA, of the 17 subjects on which the best decomposition at size 2 is better than
monolithic verification, on only 5 of these is the generalized decomposition better than
monolithic verification at the largest size such a comparison could be made. With LTSA,
there are two subjects worth noting. The first is subject 22 where assume-guarantee reason-
ing is better than monolithic verification at size 7 and worse at all other sizes. On this sub-
ject, assume-guarantee reasoning ran out of memory at size 9 but monolithic verification
was able to verify the property. The second subject is subject 12 where assume-guarantee
ACM Journal Name, Vol. V, No. N, November 2007.
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Fig. 6. Memory used by the generalized decompositions for LTSA

reasoning is worse than monolithic verification at size 4 and better at all other sizes up to
size 5, the largest size that we were able to try.4

If we restrict our attention to just those subjects where the best decomposition at size 2
saved memory, then at larger system sizes FLAVERS used less memory than monolithic
verification on 16 of the 17 subjects and LTSA used less memory than monolithic verifica-
tion on 5 of the 17 subjects. This is a 94% success rate for FLAVERS and a 29% success
rate for LTSA, a significant difference.

Figures 4, 5, and 6 illustrate this difference in the performance of the generalized de-
compositions between FLAVERS and LTSA. With FLAVERS, for the subjects where the
best decomposition at size 2 is worse than monolithic verification, assume-guarantee rea-
soning tends to use increasingly larger amounts of memory, when compared to monolithic,
as the system size increases. In other words, the normalized memory usage increases as
the system size increases. With FLAVERS, for the subjects where the best decomposi-
tion at size 2 is better than monolithic verification, assume-guarantee reasoning tends to
save more memory, when compared to monolithic verification, as system size increases. In
other words, the normalized memory usage tends to decrease as the system size increase.

This is not true, however, with LTSA. With LTSA, assume-guarantee reasoning tends to
use more memory, when compared to monolithic verification, as the system size increases.
In other words, the normalized memory tends to increase as the system size increases, re-

4Unfortunately, we could not generate the model for this system at size 6. We discuss this issue in Section 4.3.
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gardless of the performance of assume-guarantee reasoning at size 2, although this increase
was more pronounced on subjects where the memory used by the best decomposition at
size 2 was worse than monolithic verification.

We believe the difference in the performance of assume-guarantee reasoning on the two
verifiers is mostly due to the differences in the models used by the two verifiers. For LTSA,
each thread is represented by a thread reachability graph. For FLAVERS, each thread is
represented by a control flow graph, which is usually smaller and more abstract than a
thread reachability graph. FLAVERS adds precision into the model through the use of
constraints. Since the number of constraints often does not increase as the system size
increases [Dwyer et al. 2004], this means that the model used by FLAVERS often does
not increase in size as quickly as the model generated for LTSA. It seems likely that this
observed difference resulted from the performance difference between the two verifiers.

To summarize the results at larger system sizes, with FLAVERS the best decomposition
at size 2 is better than monolithic verification on 17 of the 32 subjects, or about 53% of
the time, and the generalized decomposition is better than monolithic verification at the
largest size both could verify on 18 of the 32 subjects, or about 56% of the time. With
LTSA the best decomposition at size 2 is better than monolithic verification on 17 of the
30 subjects, or about 56% of the time, and the generalized decomposition is better than
monolithic verification at the largest size both could verify on 3 of the 30 subjects, or 10%
of the time. Thus, the automated assume-guarantee reasoning technique we used was able
to save memory on larger size systems for a bit more than half the subjects with FLAVERS
and for one tenth of the subjects with LTSA.

4.3 Can Assume-guarantee Reasoning Verify Properties of Larger Systems than
Monolithic Verification Can?

Although using generalized decompositions for assume-guarantee reasoning uses less
memory than monolithic verification in some cases, this memory savings might not be
sufficient to overcome the state-explosion problem. Thus, for each subject, we tried to
determine whether or not assume-guarantee reasoning using generalized decompositions
would allow us to verify properties for larger systems than monolithic verification.

Unfortunately, the language processing toolkit5 [Taylor et al. 1988] used by FLAVERS
for generating its models and by INCA for generating the models for LTSA cannot handle
the Chiron and Relay systems at larger sizes. Thus, we were unable to determine whether
or not assume-guarantee reasoning using generalized decompositions would allow us to
verify properties of larger systems than monolithic verification for some of the subjects
associated with these two systems. Thus, we assigned each subject to one of five categories:

(1) Assume-guarantee reasoning can verify a subject at a larger system size than mono-
lithic verification.

(2) It is unknown whether or not assume-guarantee reasoning can verify a subject at a
larger system than monolithic verification because the language processing toolkit
could not generate models for a large enough size system for at least one of mono-
lithic verification or assume-guarantee reasoning to run out of memory. We consider
it likely that assume-guarantee reasoning can verify larger systems than monolithic

5This toolkit is old and not easily modifiable.
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Table IV. Generalized decompositions compared to monolithic verification with respect to scaling
FLAVERS LTSA

Number of Number of
Subjects Percentage Subjects Percentage

Likely
Success

(1) Generalized can scale
farther than monolithic

8 25.0% 0 0.0%

(2) Don’t know, but
generalized appears better than
monolithic

7 21.9% 2 6.7%

(3) Monolithic scales well, but
generalized appears to be better

2 6.3% 0 0.0%

Subtotal 17 53.1% 2 6.7%

Likely
Failure

(4) Generalized cannot scale
farther than monolithic

13 40.6% 14 46.7%

(5) Don’t know, but
generalized appears worse than
monolithic

2 6.3% 14 46.7%

Subtotal 15 46.9% 28 93.3%
Total 32 100.0% 30 100.0%

verification, however, because assume-guarantee reasoning is better than monolithic
verification for the largest system size such a comparison can be made.

(3) Both assume-guarantee reasoning and monolithic verification can verify a subject on
systems of size 200, and thus assume-guarantee reasoning would be of little value. In
all such cases where this occurred in our experiments, assume-guarantee reasoning is
better than monolithic verification at size 200, and thus to be conservative we consider
these subjects as likely successes.

(4) Assume-guarantee reasoning cannot verify a subject at a larger system than monolithic
verification.

(5) It is unknown whether or not assume-guarantee reasoning can verify a subject at a
larger system than monolithic verification because the language processing toolkit
could not generate models for a large enough size system for at least one of mono-
lithic verification or assume-guarantee reasoning to run out of memory. We consider
it unlikely that assume-guarantee reasoning can verify larger systems than monolithic
verification, however, because assume-guarantee reasoning is worse than monolithic
verification for the largest system size such a comparison can be made.

Table IV shows the number of subjects in each category for FLAVERS and LTSA. We
consider the use of generalized decompositions to likely succeed in verifying a property
on a larger system than monolithic verification could handle if the subject is in category 1,
2, or 3. Although we consider assume-guarantee reasoning to not be needed if the subject
is in category 3, we still count subjects in this category as a likely success. We consider
the use of generalized decompositions to likely fail in verifying a property on a larger
system than monolithic verification could handle if the subject is in category 4 or 5. As
mentioned previously, for LTSA subject 12 is hard to classify since assume-guarantee rea-
soning is worse than monolithic verification at size 4 and better at all other sizes. Because
of language processing issues, we could not build a model for this system at size 6. Since
assume-guarantee reasoning is better than monolithic verification at size 5, the largest size
such a comparison can be made, we conservatively assigned this subject to category 2.
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Although we could demonstrate that assume-guarantee reasoning scales farther than
monolithic verification on eight subjects for FLAVERS, six in category 1 and two in cate-
gory 3, it is also important to look at how much farther assume-guarantee reasoning scales.
On five of these eight subjects, assume-guarantee reasoning can verify the subject on a
system one size larger, but not two sizes larger, than monolithic verification can. On one
of the eight subjects, assume-guarantee reasoning can verify the subject on a system two
sizes larger, but not three sizes larger, than monolithic verification can. On the remaining
two subjects assume-guarantee reasoning can verify the subject on a system at least three
sizes larger than monolithic verification can. On these last two subjects we were able to
increase the size of the subject that could be verified from 32 to 35 in one case and from 47
to 50 in the other case. Although there are eight subjects where assume-guarantee reason-
ing can scale farther than monolithic verification, assume-guarantee reasoning can verify
these subjects on systems only slightly larger than the size of the system on which these
subjects can be verified monolithically.

Table IV shows a potential success rate of about 53% for FLAVERS and about 7% for
LTSA. Note that this rate is the upper bound of the success rate. By looking at just the
subjects where we could demonstrate that assume-guarantee reasoning could scale farther,
we obtain the lower bound of the success rate: 25% for FLAVERS and 0% for LTSA.

In summary, we expect that assume-guarantee reasoning would be an effective approach
for verifying properties at larger system sizes than monolithic verification on at most 53%
of the subjects for FLAVERS and on at most 7% of the subjects for LTSA. While a 53%
success rate may look encouraging, assume-guarantee reasoning using generalized decom-
positions did not significantly increase the size of the systems for which we could verify
properties. Considering the effort to find the best decomposition at size 2, it is questionable
whether or not the benefit of verifying a subject on a slightly larger system size is worth
the necessary investment of time.

Although these results are discouraging, we also tried to determine if there was some
way to predict the subjects for which assume-guarantee reasoning would likely produce
a significant memory savings. Unfortunately, we could not find such a classification, al-
though we do have some observations. One type of constraint used by FLAVERS is a
Task Automaton (TA). It appears that when the number of TAs needed to prove a property
increases as the system size increases, assume-guarantee reasoning based on generalized
decompositions tends to use more memory than monolithic verification. Of the 14 subjects
where this is the situation 10 of them are classified as failures in Table IV. Of the 13 sub-
jects where only one TA is needed to prove the property regardless of system size, 4 are
classified as failures in Table IV and 3 are in category 3 where assume-guarantee reasoning
is not likely to be of much use since monolithic verification scales well. On the remaining
5 subjects, we cannot find a pattern to determine whether or not assume-guarantee reason-
ing based on generalized decompositions will perform better than monolithic verification.
For LTSA, there are too few successful cases to predict when assume-guarantee reasoning
might be successful. Interestingly, there was 1 subject, subject 16, where assume-guarantee
reasoning for FLAVERS works poorly, but assume-guarantee reasoning for LTSA works
well. While our observations may provide some guidance to help determine whether or not
assume-guarantee reasoning is likely to increase the size of the system on which a property
can be verified, more experimentation is needed before any conclusions can be drawn.
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Table V. System sizes at which the best decomposition is known
FLAVERS LTSA

Size Attempted Succeeded Attempted Succeeded
2 32 32 30 30
3 32 23 30 30
4 24 18 21 21
5 2 2 1 1

4.4 Are the Generalized Decompositions the Best Decompositions?

These discouraging results were obtained using decompositions that were generalized from
the best decomposition on problems of size 2. It is possible that the generalized decompo-
sitions we selected are not the best decompositions to use on the larger systems sizes. To
investigate this issue, we tried to find the best decomposition for some larger system sizes.

4.4.1 Comparing the Best-known Decompositions to the Generalized Decompositions.
In performing these experiments, we encountered a number of two-way decompositions
where it took more than a month to learn an assumption.6 As a result, we imposed an
upper bound on the amount of time we spent evaluating a single two-way decomposition
to be the maximum of 1 hour and 10 times the amount of time needed to verify that subject
monolithically. Thus, for some of the decompositions, assume-guarantee reasoning was
not allowed to run until it completed and, as a result, we do not know how good these
decompositions are. On every subject where the upper bound on time was reached for
some decomposition, we were able to find at least one decomposition for that subject that
is better than the generalized decomposition. Table V gives the number of subjects for
which we attempted to find the best decomposition at a given system size. It also gives,
in the Succeeded column, the number of subjects for which we were able to find the best
decomposition at a given system size, meaning those subject for which the time bound was
never reached on any decomposition.

Figures 7 and 8 compare, for FLAVERS and LTSA respectively, the memory usage of
the generalized decomposition, the best-known decomposition, and monolithic verification
at the largest size such a comparison could be made; note that this size varies from subject
to subject. In these figures the height of the bars (meaning the top horizontal line on each
bar, not the top of the triangles for those bars with triangles) shows the amount of memory
used by the generalized decomposition, normalized by dividing by the amount of memory
used by monolithic verification. The height of the dots shows the amount of memory
used by the best-known decomposition, normalized by dividing by the amount of memory
used by monolithic verification. A dot that is filled in represents a subject for which we
know the best decomposition. A dot that is not filled in represents a subject for which we
do not know the best decomposition, meaning there might be better decompositions than
our best-known decomposition. Because it is not always clear from the figure whether or
not the height of the bar is the same as the height of the dot, we use a bar with a white
background to represent a subject where the generalized decomposition is the same as the
best decomposition and a bar with a gray background to represent a subject where the

6The time needed to evaluate the decompositions that took more than a month is counted in the 1.54 years of CPU
time needed for our experiments. Still, more than 99% of the decompositions required less than 1 day to evaluate.
The time used for just the decompositions that took less than 1 day to evaluate added up to over 11 months of
CPU time.
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Fig. 7. Memory used by the generalized decomposition compared to the best-known decomposition for
FLAVERS
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Fig. 8. Memory used by the generalized decomposition compared to the best-known decomposition for LTSA

generalized decomposition is not the same as the best decomposition. Bars that are topped
with triangles represent subjects where the generalized decompositions ran out of memory
on systems with size 3. The height of these bars (not counting the triangles) shows the
lower bound on the amount of memory used by the generalized decompositions, meaning
the generalized decomposition uses at least as much memory as the height of the bar. Each
subject has been labeled with the same number that was assigned to that subject in Table I.
For reference, a line at 1.0 has been drawn.

As stated previously, because of the cost involved we did not always obtain data about
the best decomposition at the largest system size on which we were able to use the general-
ized decomposition. For example, for subject 1 with LTSA the generalized decomposition
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scaled to size 5 but we only found the best decomposition at size 4. So, Figure 8 shows the
data at size 4 for subject 1 because this is the largest size for which we have information
about the best decomposition, the generalized decomposition, and monolithic verification.
For subject 1 with LTSA, the generalized decomposition is better than monolithic verifi-
cation at size 4 but not at size 5. Thus, Figure 8 shows the generalization decomposition
on subject 1 as performing better than monolithic verification, but subject 1 is counted as
being in category 5 in Table IV. Because there are multiple subjects for which this is the
case, there is not a simple correspondence between the data in Figures 7 and 8.

Note that for LTSA, every subject has a filled dot, meaning we know the best decompo-
sition for each subject at the largest system size we tried to find the best decomposition for
that subject. There are still larger system sizes for these subjects for which we did not try
to find the best decomposition.

These figures show that using the generalized decompositions is not always optimal with
respect to memory usage. With FLAVERS, the generalized decomposition is the best de-
composition on 10 of 32 subjects (31%). With LTSA, this is true on 11 of 30 subjects
(37%). For some subjects, the difference in memory usage between the generalized de-
composition and the best-known decomposition is significant, while in other cases, there
is almost no difference. For very few subjects, though, is the generalized decomposition
worse than monolithic verification while the best decomposition is better than monolithic.
This happened on only one subject with FLAVERS, subject 24, and three subjects with
LTSA, subjects 11, 12, and 24.

4.4.2 Generalizing Decompositions from the Best-known Decomposition at Larger
System Sizes. For the subjects where the generalized decomposition is not the best decom-
position, we were interested in determining if generalizng the best-known decomposition
for a system size larger than 2 could be used be used to verify larger systems than can
be verified monolithically. Thus, when we found a decomposition for size n (n > 2) that
was better than the generalized decomposition from size 2, we generalized the best-known
decomposition for size n so that it could be used on systems larger than size n. In all such
cases, the generalized decomposition from size n is better than the generalized decom-
position from size 2. We also tried taking the best-known decompositions for size n and
simplifying them so they could be used on systems of size 2, similar to the process shown
in Figure 3, but in reverse. The decompositions for size n, when simplified to size 2, are
worse than monolithic verification in all but one case.

In addition we found 3 subjects where there are decompositions that can be used to verify
that subject on a larger system size than either monolithic verification or the generalized
decompositions from size 2. One of these is subject 19 with FLAVERS. Figure 9 compares
the number of states explored using two different generalizations (from size 2 and from
size 4) to the number of states explored using monolithic verification. For this subject, the
generalized decomposition from size 2 is the best decomposition for size 3, but it is not the
best decomposition for size 4. We do not know what the best decomposition is for size 4
because it requires too much time to find. We do know that if we generalize the best-known
decomposition for size 4, we can verify this subject on systems with size 6, one size greater
than monolithic verification and the generalized decomposition from size 2.

On subject 24 with FLAVERS, the generalized decompositions from size 2 are worse
than monolithic verification. We were able to find a decomposition that allowed us to verify
this subject on the system with size 7, one size larger than monolithic verification. This
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decomposition, however, was not easy to find. When looking at the best decompositions for
size 2, 3, 4, and 5, we noticed that there is a pattern to the best decompositions that depends
on whether or not the size of the system is odd or even. For this subject, Figure 10 compares
the number of states using the generalized decomposition from size 2, the decompositions
based on the odd/even pattern, and the monolithic verification.
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For the third subject, subject 11 with FLAVERS, monolithic verification and assume-
guarantee reasoning using the generalized decomposition from size 2 can verify this subject
on a system of size 5, but not 6. Using the generalized decomposition from size 3 allows
assume-guarantee reasoning to verify this subject on a system of size 6.

To summarize, although finding the best decomposition at a small system size and gen-
eralizing it so that it is applicable for larger system sizes was not too costly a process, it
often does not produce the best decomposition at those larger sizes. There are subjects
where using decompositions other than the generalized decomposition from size 2 allowed
us to verify properties on larger systems than when we used those generalized decom-
positions. Because we were unable to find heuristics that enabled us to find these better
decompositions, we tried all two-way decompositions for larger system sizes, a process
that is probably too costly to be useful in practice.

4.4.3 Discussion. While we tried to find the best decomposition for all subjects at
some larger systems sizes, because of the costs involved we did not always attempt this
at the largest size for each subject in our study. At the largest size we could compare the
generalized and the best decomposition, they were the same on 10 of 32 subjects with
FLAVERS and on 11 of 30 subjects with LTSA. With FLAVERS, for 15 of the 32 subjects
we were not able to find the best decomposition at the largest system size we attempted
but we were able to find a decomposition that uses less memory than the generalized de-
compositions from size 2. With LTSA, for all of the subjects we were able to find the best
decomposition at the largest system size we attempted.

As stated previously, our use of generalized decompositions from size 2 often did not
allow us to verify properties on larger systems than monolithic verification and, when it did,
it only allowed us to verify those properties on systems 1 or 2 sizes larger. Had we been
able to find the best decomposition for every subject at every system size, we do not think
that our results would be significantly different. There might be subjects, like the three
discussed in Section 4.4.2, where decompositions other than the ones we examined would
have allowed us to verify those subjects at larger system sizes than monolithic verification.
But, since there are few subjects on which the best-known decomposition is significantly
better than the generalized decomposition, as shown in Figures 7 and 8, we doubt that there
exist other decompositions that would have allowed us to verify properties on significantly
larger systems than monolithic verification.

4.5 Does Assume-guarantee Reasoning Save Time?

Although assume-guarantee reasoning was not usually successful in increasing the size of
the systems on which properties could be verified, if assume-guarantee reasoning could
reduce the time needed for verification, it might still be worth using. When we compared
the time used by assume-guarantee reasoning to the time used by monolithic verification,
including the time to build the artifacts (e.g., TFGs) but not counting the time used by the
language processing toolkit, we found that assume-guarantee reasoning with FLAVERS
uses less time on 11 of the 32 subjects (34.4%) and that assume-guarantee reasoning with
LTSA uses less time on 7 of the 30 subjects (23.3%)

Figures 11, 12, and 13 show the amount of time used by assume-guarantee reasoning
with generalized decompositions from size 2 normalized by dividing by the amount of
time used by monolithic verification as the size of the systems is increased. Each solid line
represents a single subject. A dotted line at 1.0 has been provided for reference. Figures 11

ACM Journal Name, Vol. V, No. N, November 2007.



26 · Jamieson M. Cobleigh et al.

●

●

●

●

● ● ● ●
● ● ●

● ●

● ● ●
● ●

● ●
● ●

●

●

●

●

●

●

●

●

● ●

● ● ●

● ●
● ● ●

●
● ● ●

●
●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

● ●
●

●
● ● ●

●
●

●

●

●

●

●

● ●
● ● ●

● ● ●
● ●

●

● ● ●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ● ● ●
● ● ● ● ●

●

●

●

● ● ● ●
●

●
● ●

●

2 4 6 8 10

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

System Size

N
or

m
al

iz
ed

 T
im

e

Fig. 11. Time used by the generalized decompositions for FLAVERS up to size 10

and 12 show data for FLAVERS. The former shows the data for system sizes less than or
equal to 10 while the latter shows the data for only those subjects that could scale above
size 10. Note that each line in Figure 12 corresponds to a line that is shown in Figure 11.
The two lines in Figure 12 that have data at size 50 correspond to subjects where we
actually have data up to size 200. As before, the slopes of the lines for these two subjects
do not significantly change above size 50, and thus we have chosen not to show data above
size 50 so that details at the smaller sizes can be more easily seen.

Figure 13 shows all of the data for LTSA. As before, for 8 subjects with FLAVERS and
3 subjects with LTSA there are single points at size 2. On these subjects, the generalized
decompositions from size 2 runs out of memory at size 3.

There are two subjects worth noting in Figure 12, the two subjects where the slope
suddenly changes before the last data point. These are subjects 22 and 33 and correspond
to systems where monolithic verification runs out of memory at the next largest system
size and needs almost all of the available memory to verify the subject at the largest size
at which it can be verified. It seems likely that the Java garbage collector needs to run
more often and, thus, introduces extra overhead to monolithic verification, slowing it down
significantly. This might explain the drastic change in slope seen for these two subjects.

To summarize, on the subjects for which assume-guarantee reasoning uses less time than
monolithic verification, it sometimes uses significantly less time. When assume-guarantee
reasoning uses more time than monolithic verification, it often uses significantly more time,
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Fig. 12. Time used by the generalized decompositions for FLAVERS for just those subjects where the largest
system size that could be verified is greater than 10

particularly for LTSA. A large portion of this time cost is due to the learning algorithm we
used, and this is discussed in the next section.

4.6 What is the Cost of Using the L* Algorithm?

We also tried to investigate whether or not using the L* algorithm to learn assumptions
increased the cost of assume-guarantee reasoning. To do this, we first determined, for each
subject, the cost of assume-guarantee reasoning when the L* algorithm is used to learn
an assumption. At the end of each verification done with assume-guarantee reasoning,
we saved the assumption that was used to complete the assume-guarantee proof. These
assumptions were then used to evaluate the cost of assume-guarantee reasoning when as-
sumptions are not learned. For each subject with property P, this cost was determined
by checking 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉, letting A be the assumption that was previously
learned when P was verified using assume-guarantee reasoning with the L* algorithm. For
each subject, we compared the time and memory costs for the largest sized system on
which that subject could be verified using automated assume-guarantee reasoning with the
decompositions generalized from size 2.

4.6.1 Memory Cost of Using the L* Algorithm. For a subject with property P, we
consider the amount of memory used during assume-guarantee reasoning with the L* al-
gorithm to be the maximum number of states explored when the teacher answers a query or
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Fig. 13. Time used by the generalized decompositions for LTSA

conjecture of the L* algorithm. We consider the amount of memory used during assume-
guarantee reasoning without the L* algorithm to be the maximum number of states ex-
plored when verifying 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉, where A is the assumption that was
previously learned by the L* algorithm.

For FLAVERS, the amount of memory used by the two approaches is the same on 29
of the 32 subjects. On the remaining three subjects, assume-guarantee reasoning without
the L* algorithm uses 78.6%, 86.6%, and 96.7% of the memory used by assume-guarantee
reasoning with the L* algorithm. On two of these three subjects, the amount of memory
used by assume-guarantee reasoning with and without the L* algorithm is greater than
the amount of memory used by monolithic verification. On the third subject, assume-
guarantee reasoning without the L* algorithm uses 0.54% of the memory of monolithic
verification compared to 0.69%, with the L* algorithm. Since this difference is so small
on this third subject, we doubt that learning an assumption affected the results of whether
or not assume-guarantee could verify properties of larger system sizes than monolithic
verification. Overall, it does not appear that our use of learning significantly impacted the
results of our experiments with FLAVERS.

For LTSA, the amount of memory used by the two approaches is the same on 29 of the 30
subjects. On the remaining subject, assume-guarantee reasoning without the L* algorithm
uses 14.5% of the memory used by assume-guarantee reasoning with the L* algorithm. On
this subject, assume-guarantee reasoning with the L* algorithm uses 491.1% of memory
that monolithic verification uses, but without the L* algorithm only uses 71.4% of memory
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Fig. 14. Percentage of time spent learning for FLAVERS

that monolithic verification uses. Thus, on this subject, our use of learning could have
affected whether or not assume-guarantee could verify a larger system than monolithic
verification. When we looked at the assumption generated for this system at size 2 and
size 3, we could not see a way to generalize the assumption to make it applicable on larger
system sizes. As a result, to verify this subject using assume-guarantee reasoning, it would
probably be necessary to use the L* algorithm or some other automated approach.

To summarize, for very few subjects does assume-guarantee reasoning with learning use
more memory than verifying that subject with assume-guarantee reasoning using a sup-
plied assumption. Even for the small number of subjects where there is memory overhead
as a result of our use of the L* algorithm to learn an assumption, we doubt that this over-
head had a significant impact on the results of whether or not assume-guarantee reasoning
could verify properties of larger systems than monolithic verification.

4.6.2 Time Cost of Using the L* Algorithm. For a subject with property P, we consider
the amount of time used during assume-guarantee reasoning with the L* algorithm to be
the amount of time needed to verify that subject, including the time to build the artifacts
(i.e, the TFGs, LTSs, etc.) and run the L* algorithm. We consider the amount of time
used during assume-guarantee reasoning without the L* algorithm to be the amount of
time needed to verify 〈A〉 S1 〈P〉 and 〈true〉 S2 〈A〉, including the time needed to build the
artifacts, where A is the assumption that was previous learned by the L* algorithm. In
neither case do we count the time used by the language processing toolkit.

Figures 14 and 15 show the percentage of time that is spent learning an assumption
compared to the size of the assumption that was learned. When the size of the learned
assumption is small, fewer than 10 states, less than 50% of the total verification time is
spent learning the assumptions. When the size of the learned assumption is larger than 10
states, however, usually over 90% of the verification time is spent learning the assumptions,
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Fig. 15. Percentage of time spent learning for LTSA

a substantial overhead. Thus, our use of learned assumptions had a significant impact on
the time cost of assume-guarantee reasoning for many subjects.

4.6.3 Reducing the Cost of Using the L* Algorithm. Because of this time overhead, we
looked at two ways to reduce the cost of automatically learning an assumption. First, since
we were able to use generalized decompositions to apply assume-guarantee reasoning to
larger-sized systems, we tried generalizing the assumptions in a similar fashion. When
the learned assumption was small, the learning algorithm did not add significant overhead
to verification, so reducing this cost would not have had a significant impact in reducing
the cost of verification. When the learned assumption was large, however, it was difficult
to understand what behavior the assumption is trying to capture. Without such an under-
standing, it is not possible to determine what the assumption should be for a larger-sized
system. As a result, we were unable to use generalized assumptions to reduce the cost of
automated assume-guarantee reasoning.

Second, we tried to apply the work of Groce et al. [2002] to help reduce the cost of
using the L* algorithm. This work presented a technique for initializing some of the L*
algorithm’s data structures for Angluin’s version of the L* algorithm when given an au-
tomaton that recognizes a language close to the one being learned. In our experiments,
initializing these data structures in Angluin’s version of the L* algorithm did not offer any
performance benefits over using Rivest and Schapire’s version of the L* algorithm, which
has better worst-case bounds. We have been unable to find a similar technique to initialize
the data structures of Rivest and Schapire’s version of the L* algorithm because of the
constraints this version places on its data structures.

4.6.4 Summary. Using the L* algorithm to learn an assumption often increases the
time needed but rarely increases the memory needed to complete an assume-guarantee
proof compared to the cost of completing a proof using a supplied assumption. The over-
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head for using an automated assumption generation technique, however, is probably un-
avoidable on several of our subjects. Some of the learned assumptions are very large: in
fact, one has over 250 states. For such systems, we suspect that small assumptions do not
exist that can be used to complete the assume-guarantee proof and analysts cannot be ex-
pected to develop these assumptions manually. Thus, some automated support is needed
to make assume-guarantee reasoning practical on these systems.

4.7 Threats to Validity

Although our experiments examined several systems in detail, they are still limited in
scope: we used two finite-state verifiers, one assume-guarantee reasoning technique, and a
small number of systems. Even in this limited context, our experiments were expensive to
perform.

Although we used only two verifiers, we expect that using the L* algorithm to learn
assumptions with other verifiers will produce similar results. This conjecture is consistent
with the results of Alur et al. [2005] for NuSMV [Cimatti et al. 2002] in which they found
some subjects where assume-guarantee reasoning verifies a larger system than monolithic
verification and other subjects where assume-guarantee reasoning uses more memory than
monolithic verification.

We looked at only one assumption generation technique, which influenced the assump-
tions used in completing the assume-guarantee proofs. While other assumptions could be
used to complete assume-guarantee proofs in our examples, automated support to help find
assumptions is necessary to make assume-guarantee reasoning useful in practice. Addi-
tionally, we expect that other assumption generation techniques based on two-way decom-
positions (e.g., [Giannakopoulou et al. 2002; Barringer et al. 2003; Alur et al. 2005; Chaki
et al. 2005]) would produce assumptions similar to the ones generated by the algorithm
we used. Since discharging the premises of the assume-guarantee rules tended to be the
most expensive part of the analysis with respect to memory, we suspect that using these
other techniques will not produce better results. Although automated techniques based on
assume-guarantee rules that allow for more than two-way decompositions (e.g., [Inverardi
et al. 2000; Henzinger et al. 2003; de la Riva and Tuya 2004]) might perform better with
respect to memory, there has not yet been enough empirical evaluation of these techniques
to draw any conclusions.

Additionally, we looked at only a small number of systems that are mostly based on
a client-server architecture and where scaling is achieved by replicating the number of
clients. This allowed us to easily increase the size of the system to investigate the effects
of scaling on assume-guarantee reasoning. Primarily looking at one kind of architecture,
however, might limit the generality of our results. Alur et al. [2005], however, looked at
systems with different architectures and had results that were similar to ours.

We also used one generalization approach, shown in Figure 3, when looking at larger
system sizes, and that could affect our results. In particular, in the case where none of
the repeatable tasks are treated in a different way in the property, we put one task into S1
and the rest into S2 (or vice versa). For this case, we also looked at splitting the tasks
evenly between S1 and S2, either by putting the first half of the repeatable tasks in S1
and the rest in S2 or by putting the repeatable tasks with odd IDs in S1 and the rest in S2
(or vice versa, in both cases). For most of the subjects, these alternative generalization
approaches made little difference in the amount of memory used. For one subject with
FLAVERS, these alternate generalizations used between three and four times the memory
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as the one generated using the algorithm shown in Figure 3. For another subject with
FLAVERS, the alternative generalizations used between one third and one half the memory
as the one generated using the algorithm shown in Figure 3. Except for these few outliers,
the alternative generalization approaches we tried did not produce significantly different
results, and thus we do not expect other generalization approaches to be more successful.

Despite these threats, our experiments are a careful study of one automated assume-
guarantee reasoning technique and raise doubts about the usefulness of assume-guarantee
reasoning as an effective compositional analysis technique.

5. RELATED WORK

Although assume-guarantee reasoning has been proposed as a possible solution to the
state-explosion problem [Jones 1983; Pnueli 1984], and many assume-guarantee frame-
works have been developed (e.g., [Shurek and Grumberg 1990; Grumberg and Long 1994;
Abadi and Lamport 1995]), the difficulty in generating assumptions to complete assume-
guarantee proofs has made evaluating assume-guarantee reasoning difficult. Several case
studies have been performed (e.g., [Henzinger et al. 1998; McMillan 1998; Fournet et al.
2004]), but these have been limited to small systems because the assumptions were devel-
oped manually. Still, both Henzinger et al. and McMillan showed how assume-guarantee
reasoning can be used to verify larger systems than monolithic verification using SMV
[McMillan 1993] and Mocha [Alur et al. 1998], respectively. Fournet et al. implemented
their algorithm for Zing [Andrews et al. 2004] but did not compare their approach to mono-
lithic verification, however, so it is unknown if it offers a benefit over monolithic verifica-
tion.

Recent work on automated assumption generation has made case studies easier to per-
form. Several approaches, like ours, are based on the work of Cobleigh et al. [2003], which
uses the L* algorithm to learn assumptions. The work of Barringer et al. [2003] extends this
approach to use symmetric assume-guarantee rules. Chaki et al. [2004] implemented this
approach, and their experimental results showed that, although using the symmetric rule
reduced the memory needed compared to the non-symmetric rule presented in Cobleigh
et al. [2003], using the symmetric rule could increase the time needed.

Chaki et al. [2005] developed an algorithm based on the L* algorithm for learning tree
automata for checking simulation conformance. They examined eight properties of one
system and their automated approach always used less time and memory than monolithic
verification. They looked at a protocol system with only two components and, thus, never
had to consider the decomposition problem, as we did. Since their evaluation of the one
system consistently showed improved performance, which is inconsistent with our results,
it would be interesting to see a more extensive evaluation of this approach.

Alur et al. [2005] adapted the L* algorithm for use with NuSMV. They found that some
of the properties could be verified using assume-guarantee reasoning but not verified mono-
lithically. Some of these properties are for scalable systems and, on these systems, they
were able to increase the size of the system that could be verified by one or two. They
did not, however, determine if assume-guarantee reasoning can scale farther than this, but,
based on their data, it seems unlikely. Alur et al. also reported on one property where
assume-guarantee reasoning used more time and memory than monolithic verification.

The work of Giannakopoulou et al. [2002] also computes assumptions, but requires
exploring the entire state space of S1. The scalability of this approach has been compared
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to our approach only on one small example, and our approach used less memory. Because
our approach does not require exploring the entire state space of S1, we expect that it will
use less memory in practice.

Gheorghiu et al. [2007] extended the approach we used in this paper so that the alphabet
of the assumption is refined during the learning process. Instead of starting with the largest
possible alphabet, this approach starts with a smaller alphabet and adds events to it as
needed until the property being verified is either shown to hold or to not hold. With 2-way
decompositions, in the cases they examined, this approach sometimes used less time and
sometimes used less memory then our approach. But, in all the cases they considered,
this approach was worse than monolithic verification. Gheorghui et al. also extended their
approach to use n-way decompositions, where n is the number of tasks in the system. With
n-way decompositions, this approach used less memory than monolithic verification in
about half of their examples and used more time than monolithic verification in almost all
of their examples. This approach shows promise because assume-guarantee reasoning with
n-way decompositions tended to perform better, in terms of both time and memory, when
compared to monolithic verification, as system size increased.

Chaki and Strichman [2007] showed how the L* algorithm can be optimized in the
context of assume-guarantee reasoning to reduce the number of queries needed. This work
presents three optimizations, including one that minimizes the assumption alphabet, similar
to the algorithm presented in Gheorghiu et al. [2007]. Chaki and Strichman evaluated
these optimizations by verifying ten properties of one system and found that they reduced
the time needed for verification when compared to using the L* algorithm without the
optimizations. The system they looked at was a protocol and only had two components
and, as a result, they did not consider the decomposition problem, as we did. Additionally,
they did not compare their approach to monolithic verification.

Other approaches have been proposed based on assume-guarantee proof rules that allow
a system to be decomposed into an arbitrary number of subsystems. Inverardi et al. [2000]
showed how to derive assumptions automatically for systems specified in CHAM [Berry
and Boudol 1992] to check for freedom from deadlock using assume-guarantee reasoning.
This approach has a better worst-case memory bound than monolithic verification but it
does not improve upon the worst-case time bound for monolithic verification. This work,
however, does not provide an empirical evaluation of the approach, so it is unknown if it
offers a benefit over monolithic verification in practice.

Flanagan and Qadeer [2003] developed an automated assume-guarantee reasoning ap-
proach for CALVIN [Flanagan et al. 2005] that works on systems with an arbitrary number
of tasks that communicate using a shared-memory model. They showed how the worst-
case performance of their approach is an improvement over the worst-case performance of
monolithic verification, but did not perform empirical studies. Henzinger et al. [2003] built
upon this approach and added counterexample guided abstraction refinement [Clarke et al.
2000] for use with BLAST [Henzinger et al. 2002]. Thread-modular reasoning in BLAST
is incomplete, meaning there are some properties that can be verified by monolithic anal-
ysis but not by the compositional approach. Still, they used this approach to successfully
prove properties of several systems. They did not report on how their approach compared
to monolithic verification, however.

Data mining techniques [Agrawal et al. 1993] have been used by de la Riva et al. [2001]
for building assumptions for SA/RT models (which resemble StateCharts [Harel et al.
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1990]). This work was later extended to allow assumptions for multiple components to
be generated simultaneously using the assumptions that have already been generated to
prune the search space [de la Riva and Tuya 2004]. This approach was applied to one
system, but not compared to monolithic verification.

Jeffords and Heitmeyer [2003] used an invariant generation tool to generate invariants
for components that can be used to complete an assume-guarantee proof. Although their
proof rules are sound and complete, their invariant generation algorithm is not guaranteed
to produce invariants that will complete an assume-guarantee proof even if such invariants
exist. Still, in their experiments, their approach provided a time savings over monolithic
verification. They did not, however, report on memory usage.

Another compositional analysis approach that has been advocated is Compositional
Reachability Analysis (CRA) (e.g., [Yeh and Young 1991; Giannakopoulou et al. 1999]).
CRA incrementally computes and abstracts the behavior of composite components using
the architecture of the system as a guide to the order in which to perform the composition.
CRA can be automated and in some case studies (e.g., [Cheung and Kramer 1996]) has
been shown to reduce the cost of verification. Constraints, both manually supplied and
automatically derived, can help reduce the cost of CRA [Cheung and Kramer 1996], but
determining how to apply CRA to effectively reduce the cost of verification still remains a
difficult problem.

6. CONCLUSIONS

Assume-guarantee reasoning has been proposed as an approach to address the state-
explosion problem. There are two major obstacles that are encountered when trying to
apply assume-guarantee reasoning to a system. First, if the assume-guarantee rule cannot
handle an arbitrary number of subsystems, then a decomposition of the system must be
selected in which its subsystems are divided into a suitable number of pieces based on the
assume-guarantee rule being used. Second, once a decomposition is selected, it may be
difficult to manually find assumptions to complete the assume-guarantee proof. Recent
work in assume-guarantee reasoning allows assumptions to be generated automatically,
thus removing one of these obstacles to its use. In the study described here we examined
all two-way decompositions to find the best one with respect to memory use and then gen-
eralized those best decompositions to make them applicable on larger system sizes. We
evaluated whether or not this approach saved memory over monolithic verification, and,
if so, whether or not it allowed larger size systems to be verified. We also evaluated our
generalization approach and the cost of automatically generating assumptions in the veri-
fication process.

Unfortunately, the results of our experiments are not very encouraging. It is perhaps not
surprising that, for the vast majority of decompositions, more states were explored when
we used assume-guarantee reasoning than when we used monolithic verification. More
significantly, for the subjects at the smallest size, in about half the cases we examined
there were no decompositions for which fewer states are explored by the assume-guarantee
reasoning approach we used than by monolithic verification. Thus, it is not clear how
analysts will be able to identify the cases where assume-guarantee reasoning might be
beneficial or how they will be able to find the appropriate decompositions in those cases.

For the subjects where assume-guarantee reasoning could save memory, we were inter-
ested in determining if this memory savings would be substantial enough to allow us to ver-
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ify properties on larger systems than can be verified monolithically. Since it is impractical
to examine all two-way decompositions for larger system sizes, we used a generalization
approach. For each property, we found the best decomposition for a small system size and
then generalized that best decomposition so it could be used on larger system sizes. Us-
ing this approach, we found that even when assume-guarantee reasoning can save memory
over monolithic verification, it rarely saved enough memory to allow properties to be veri-
fied on larger systems. The memory savings were sufficient to allow verification of larger
systems on only eight of the 32 subjects for FLAVERS and on none of the 30 subjects
for LTSA. Furthermore, for the cases where assume-guarantee reasoning did verify prop-
erties at a larger system than monolithic verification, it did not significantly increase the
size of the systems for which properties could be verified. Although there may be systems
for which it is useful to verify a slightly larger system size, the overhead of applying this
assume-guarantee reasoning technique makes it questionable whether this technique can
be effectively used in practice.

Of course, there are decompositions other than the generalized ones that could have been
tried on larger systems. In fact, we examined several such decompositions and found some
examples where these alternative decompositions could be used to verify larger systems
than we were able to verify using the generalized decompositions. Unfortunately, we were
unable to find such decompositions intuitively and we did not observe any pattern that
could be used to select a good decomposition for a given system.

When we initiated this study, we did not expect that assume-guarantee reasoning would
save memory in all cases. We were surprised, however, to discover that in about half of
our subjects, assume-guarantee used more memory than monolithic verification, no matter
what decomposition was selected. In many cases, this additional cost was due to the as-
sumption learned. While the assumptions were almost always smaller than the subsystems
they replaced (i.e., |A|< |S2|), they often allowed behavior that did not occur in S2. Thus,
checking 〈A〉 S1 〈P〉 was more expensive than checking 〈true〉 S1 ‖ S2 〈P〉. (Details on the
size of the assumptions and S2 can be found in the Electronic Appendix for this paper.)

Although these results are preliminary, they raise doubts about the usefulness of assume-
guarantee reasoning as an effective compositional analysis technique. Although automated
assume-guarantee reasoning techniques can make compositional analysis easier to use,
determining how to apply these techniques most effectively is still difficult, sometimes
expensive, and not guaranteed to significantly increase the sizes of the systems that can be
verified.

These results, although discouraging, indicate several directions for future work.
The learning algorithm we used converges on the weakest possible assumption [Gian-
nakopoulou et al. 2002], that is, the assumption that allows the most behavior. As stated
previously, the high cost for assume-guarantee reasoning was largely due to the fact that
the learned assumptions often allowed behaviors that did not occur in the subsystems that
they replaced. Thus, one possible direction for future work is to develop approaches that
try to learn more specific assumptions than the weakest possible assumption. Recent work
on minimizing the alphabets of the learned assumptions seems like a promising step in this
direction [Chaki and Strichman 2007; Gheorghiu et al. 2007].

The assume-guarantee rule we used requires that a system under analysis be divided into
two subsystems. Rules that allow decomposition into an arbitrary number of subsystems
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might perform better [Chaki et al. 2004]. Thus, another possible direction for future work
is to develop and evaluate such rules.

A third direction for future work is to develop heuristics to help analysts determine
when assume-guarantee reasoning is likely to save memory over monolithic verification.
In the study reported here, all the systems that we analyzed use a client-server architecture.
Systems with other architectures, however, might be more amenable to assume-guarantee
reasoning. For instance, a research group at NASA successfully demonstrated that assume-
guarantee reasoning could be applied to a system in which a visiting vehicle does au-
tonomous rendezvous and docks with a space station [Brat et al. 2006]. This system was
built from two large subsystems that communicated with each other via a small interface.
In this case study, assume-guarantee reasoning was able to verify properties that could
not be verified monolithically. More experimentation with different architectural models
is needed to determine if assume-guarantee reasoning is more effective when applied to
certain architectures.

Although assume-guarantee reasoning has been advocated for over twenty years as a
way to lessen the effects of the state-explosion problem and recent work in automated
assumption generation has made assume-guarantee reasoning easier to apply, our work
shows that assume-guarantee reasoning often does not result in a time or memory savings
and it is difficult to find a decomposition that is effective or even to know when one exists.
These results provide insight into research directions that should be pursued and highlight
the importance of further experimental evaluation of compositional analysis techniques.

APPENDIX

In this section, we describe how the teacher for the L* algorithm can be implemented using
FLAVERS. To do this, we first need to provide a more detailed description of FLAVERS.
Full details of FLAVERS are given in Dwyer et al. [2004].

A.1 More Details about FLAVERS

Consider the example shown in Figure 16, which shows an elevator system in Ada. The
system has two tasks, a car and a controller, and a variable x that is shared by both tasks.

task body car
x := true;
accept sync;

if (x) then
accept open_doors;

end if;

if (x) then
accept close_doors;

end if;

accept move_car;
end car;

task body controller
x := false;
car.sync;

if (x) then
car.open_doors;

end if;

if (x) then
car.close_doors;

end if;

car.move_car;
end controller;

Fig. 16. Elevator system in Ada
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Fig. 17. Example property for FLAVERS

2) accept sync

3) if (x)

4) accept open

6) if(x)

1) x=true

7) accept close

8) end if

5) end if

9) accept move

10) end car

12) car.sync

13) if (x)

14) car.open

16) if(x)

11) x=false

17) car.close

18) end if

15) end if

19) car.move

20) end controller

Fig. 18. CFG for task car Fig. 19. CFG for task controller

In this system, the variable x is first set by both tasks and then the tasks rendezvous on
sync. This ensures that x is set, but because of the race condition, x could be either true
or false when the rendezvous sync occurs. If x is true when sync occurs, then, through the
rendezvous open doors and close doors, the controller instructs the car to first open and
then close its doors. Once that is done, the rendezvous move car occurs, which causes the
car to move. If x is false when sync occurs, then only the rendezvous move car occurs.
Note that this system assumes that the car’s doors are closed at the beginning.

The properties that FLAVERS verifies need to be expressed as FSAs that represent se-
quences of events that should (or should not) happen on any execution of the system. One

ACM Journal Name, Vol. V, No. N, November 2007.



38 · Jamieson M. Cobleigh et al.

2) accept sync

3) τ

4) accept open

6) τ

7) accept close

9) accept move

10) τ

12) car.sync

13) τ

14) car.open

16) τ

17) car.close

19) car.move

20) τ

Fig. 20. Refined CFG for task car Fig. 21. Refined CFG for task controller

property that should hold on the elevator system is that the car should never move while
its doors are open. The FSA for this property is shown in Figure 17, in which the events
close, move, and open refer to the rendezvous close doors, move car, and open doors, re-
spectively. State 1 represents the state where the car’s doors are closed, state 2 represents
the state where the car’s doors are open. The transition on move from state 2 to state 3
represents the car moving when its doors are open. State 3, the only non-accepting state,
represents a violation of the property, since the only way to enter it is by having the elevator
move while the car’s doors are open.

To verify a property, FLAVERS uses a model of the system based on annotated CFGs.
Annotations are placed on nodes of the CFGs to represent events that occur during execu-
tion of the actions associated with a node. The CFGs for the car and controller tasks are
shown in Figures 18 and 19, respectively.

Since the efficiency of FLAVERS’ verification is dependent on the size of the model
it analyzes, CFGs are refined to remove nodes that are not relevant to the property being
proved or are not related to intertask communication via rendezvous. Since the property
in Figure 17 only refers to the events close, move, and open, and these correspond to
rendezvous, the only nodes in the CFGs that are needed are those representing intertask
communication or the flow of control to these communications. This refinement is safe
so long as there is a weak bisimulation relationship [Milner 1989] between each original
CFG and its corresponding refined CFG. Figures 20 and 21 show the CFGs for the car
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10) τ 20) τ
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22) τ

23) 
open

24) 
close

25) 
move

26) τ

task car task controller

Fig. 22. TFG for the elevator system

and controller tasks refined with respect to the property shown in Figure 17. Note that the
refinement algorithm also relabels with τ those nodes that do not have an event label but
are necessary for control flow reasons.

As mentioned in Section 2.1, FLAVERS uses the refined CFGs to create the TFG, which
represents the concurrent behavior of the whole system with respect to the events of inter-
est. The TFG consists of a collection of CFGs with additional nodes and edges to represent
intertask control flow. The TFG that is built from the CFGs in Figures 20 and 21 is shown
in Figure 22. In this figure, nodes 21 and 26 are the unique initial node and final node
of the TFG, respectively. To represent concurrency in Ada, extra nodes and edges are
added to represent intertask communication via rendezvous. For example, node 23 and its
incident edges represent the rendezvous open doors. Additional edges are needed to repre-
sent the possible flow of control between nodes in different tasks due to task interleaving.
These May Immediately Precede (MIP) edges are computed by the May Happen in Par-
allel (MHP) algorithm [Naumovich and Avrunin 1998] and are shown as dashed edges in
Figure 22. Note that not every pair of nodes from the car and controller tasks are connected
by a MIP edge. For example, the MHP algorithm can determine that nodes 9 and 20 cannot
happen in parallel because the rendezvous car move (node 25) must happen between them.
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Fig. 23. Variable automaton for x

A TFG is an over-approximation of the sequences of events that can occur when execut-
ing a system. Thus, every sequence of events that can occur on an execution of the system
has a corresponding path in the TFG. To help keep the size of the TFG small, however,
there usually are paths in the TFG that do not correspond to any actual execution of the
system.

FLAVERS uses an efficient state-propagation algorithm [Olender and Osterweil 1992;
Dwyer et al. 2004] to determine whether all potential behaviors of the system being ana-
lyzed are consistent with the property being verified. FLAVERS analyses are conservative,
meaning FLAVERS only reports that a property holds when that property holds for all TFG
paths. If FLAVERS reports that the property does not hold, this can either be because there
is an execution that actually violates the property or because the property is violated on
infeasible paths through the TFG.

FLAVERS would report that the property shown in Figure 17 does not hold on the TFG
shown in Figure 22 because the property would be violated on the path 21 → 2 → 22 →
3→ 23→ 6→ 9→ 25→ 10→ 26, which corresponds to the event sequence 〈open, move〉.
This counterexample is infeasible, however, because the variable x must be true for the
edge 3 → 23 to be taken and false for the edge 6 → 9 to be taken. Since the value of x
is not changed in the program between nodes 23 and 6, this path cannot occur and is thus
infeasible.

This infeasible path is considered because all information related to the variable x was
removed during CFG refinement. A Variable Automaton (VA), a constraint to track a small
number of values for a variable, can be introduced to keep track of the values of x. In
the VA for x, shown in Figure 23, events with “=” represent an assignment to x, while
the events with “==” represent a test of the value of x. The three accepting states of the
VA represent the unknown, true, and false values of x. The one non-accepting state is
the violation state and is entered when a path is explored that is infeasible because of an
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Fig. 24. TFG with events for x

operation on x. For example, if x is known to be true and a branch is taken where the value
of x is false (i.e., the event x==false occurs), then the violation state would be entered.

To make use of this VA, the TFG from Figure 22 needs to be modified so it has nodes
with events corresponding to operations on x, as shown in Figure 24. In this TFG,7 each
node corresponding to a branch (nodes 3, 6, 13, and 16 from Figure 22) has been split into
two nodes, one for the true branch (the nodes labeled x==true) and one for the false branch
(the nodes labeled x==false). The counterexample path reported previously corresponds to

7In our implementation, nodes 2 and 12 would be refined away, but they have been left in Figure 24 for clarity of
the presentation.
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the path 21 → 1 → 2 → 22 → 3a → 23 → 6b → 9 → 25 → 10 → 26 in the modified TFG.
The path corresponds to the event sequence 〈x=true, x==true, open, x==false, move〉. Be-
cause the VA for x would transition from the unknown state to the true state on node 1,
remain in the true state on node 3a, and transition from the true state to the violation state
on node 6b, this path would not be considered during state propagation since it leads to the
violation state of a VA. Using just the VA for x, FLAVERS would report that the property
shown in Figure 17 holds and that the elevator’s car cannot move while its doors are open.

A.2 Implementing the Teacher in FLAVERS

Having provided a more detailed description of FLAVERS, we can now explain how a
teacher for FLAVERS can be implemented.

A.2.1 The model. To answer queries and conjectures, we need to build TFG models
for S1 and S2, the two subsystems used in the assume-guarantee proof rule. The TFGs
for S1 and S2 are similar to the TFGs that FLAVERS would normally create, but must
be extended to simulate the environment in which each subsystem will execute. Thus,
to model S1 in the context of the whole system, an environment,which is modeled as a
CFG, needs to be constructed to represent interactions between S1 and S2. Specifically, the
environment for S1 needs to have accept statements from S2 that are called by S1 and entry
calls made by S2 to accept statements in S1.

Additionally, the environment for S1 needs to contain events from S2 that can affect the
property or constraints. It is possible that an event can occur both in a task in S1 and in
a task in S2. Events common to both S1 and S2 needs to be relabeled so that they can be
distinguished from each other during analysis. Without this relabelling, the events in the
assumption would be the same as the events in S1. This would result in an analysis where
the assumption constrains the behavior of S1 instead of just constraining the behavior of the
environment of S1. To do this relabelling, we prefix events with “s1” and “s2”. Specifically:

(1) CFGs for tasks in S1 have common events prefixed with “s1”.
(2) Common events in the environment for S1 are prefixed with “s2”.
(3) The assumption, which is represented as an FSA, is used as a constraint on the envi-

ronment of S2 and as a property that is checked on S2. Thus, common events in the
assumption are prefixed with “s2”.

(4) The other FSAs (i.e., the property and other constraints) do not need to distinguish the
source of the common events. Thus, common events in these FSAs are replaced by
two events, one prefixed with “s1” and one prefixed with “s2”.

The environment CFG model can now be constructed to perform, in any order, zero or
more accepts, entry calls, and events that can affect the property or constraints. Note, that
all of the information needed to construct the environment can be gathered from the CFGs
and constraints, so the environment can be automatically constructed.

Consider the elevator example with the two tasks car and controller. Let P be the prop-
erty that the elevator’s car cannot move while its doors are open, shown in Figure 17.
Suppose that S1 = car and S2 = controller. In this example, tasks in S2 make entry calls
close doors, move car, open doors, and sync to tasks in S1. Tasks in S2 accept no entry
calls from tasks in S1. The VA for the variable x has events in both the car and controller
tasks, so the events from S2, x=false, x==true, and x==false need to be in the environment
for S1. Since the events x==true and x==false also occur in S1, these events need to be
ACM Journal Name, Vol. V, No. N, November 2007.
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29) 
s2.x==true

32) 
car.open

28)
x=false

33) 
car.close

34) 
car.move

30) 
s2.x==false

35) τ

27) τ

31) 
car.sync

Fig. 25. Environment for S1

relabeled when constructing S1 and its environment, otherwise the assumption would con-
strain S1 and not just the environment of S1. Figure 25 shows the CFG for the environment
for S1.

To build the TFG for S1, the environment for S1 needs to be combined with the CFGs
for every task in S1. Figure 26 shows the TFG for S1 in the elevator example, with MIP
edges removed for clarity.

A.2.2 The alphabet of the assumption. The L* algorithm learns an FSA over an alpha-
bet Σ. To use the L* algorithm for assume-guarantee reasoning, Σ must be provided. For
FLAVERS, the alphabet consists of the labels on all rendezvous8 that occur between S1
and S2, and the labels on the non-τ nodes that do not correspond to rendezvous in the en-
vironment of S1. For the elevator example, ΣA = {close, s2.x==false, s2.x==true, x=false,
move, open, sync}.

A.2.3 Answering queries. A query posed by the L* Algorithm consists of a sequence
of events from Σ∗. The teacher must answer true if this sequence is in the language being
learned and false otherwise. To answer a query in FLAVERS, S1 is represented as a TFG
and the query is represented as a constraint. We then use FLAVERS to determine if the
property is consistent with the TFG model as constrained by this query. If this results in
a violation of the property P, then the assumption needed to make 〈A〉 S1 〈P〉 true should
not allow the event sequence in the query and false will be returned to the L* Algorithm.
Otherwise, the event sequence is permissible and true will be returned to the L* Algorithm.

To answer a query, a TFG is first constructed using the CFGs for tasks in S1 and the
CFG for the environment of S1. The property to be checked is P. This verification uses
the constraints that contain events in S1. The CFGs, VAs, and the property P are rela-
beled as described previously to allow events in S1 and S2 to be distinguished. The query
constraint is used to restrict FLAVERS to only look at paths through the TFG that cor-
respond to the event sequence specified by the query. For example, if the query were

8This includes rendezvous that are not mentioned in the property or constraints. This is why node 37 in Figure 26
is labeled with sync instead of τ .
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3a) s1.x==true

6a) s1.x==true

1) s1.x=true

9) τ

10) τ

3b) s1.x==false

6b) s1.x==false

30) s2.x==false

29) s2.x==true

28) x=false

35) τ

27) τ

37) 
sync

41) τ

36) τ

38) 
open

39) 
close

40) 
move

task
car

S1's Environment

Fig. 26. TFG for S1, without the MIP edges shown

sync s2.x==false open move

Fig. 27. Constraint for the query 〈sync, s2.x==false, open, move〉

〈sync, s2.x==false, open, move〉, then the constraint shown in Figure 27 would be used.
State-propagation is then applied to check the property; if the property is violated then
false is returned to the L* Algorithm, otherwise true is returned.

A.2.4 Answering conjectures. A conjecture posed by the L* Algorithm consists of
an FSA that the L* Algorithm believes accepts the language being learned. To answer
a conjecture, the teacher needs to find an event sequence in the symmetric difference of
the conjectured FSA and the language being learned, if such an event sequence exists.
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Since the conjectured FSA is the candidate assumption to be used to complete an assume-
guarantee proof, it is necessary to determine if the conjectured assumption makes the two
premises of the assume-guarantee proof rule true.

First, the conjectured automaton, A, is checked in Premise 1, 〈A〉 S1 〈P〉. To check
this in FLAVERS, a TFG is constructed using the CFGs for tasks from S1 and the CFG
for the environment of S1. The property to be checked is P. This verification uses the
constraints that contain events in S1. The CFGs, VAs, and the property P are relabeled
as described previously to allow events in S1 and S2 to be distinguished. In addition, the
assumption is used as a constraint. If this verification results in a property violation, then
the counterexample returned represents an event sequence permitted by A but violating P.
Thus, the conjecture is incorrect and the counterexample is returned to the L* Algorithm.
If the property is not violated, then A is good enough to satisfy Premise 1 and Premise 2
can be checked.

Premise 2 states that 〈true〉 S2 〈A〉 should be true. To check this in FLAVERS, a TFG
is constructed using the CFGs for tasks from S2 and the CFG for the environment of S2.
Unlike the environment for S1, which consists of events, entries (calls to rendezvous), and
accepts from S2, the environment for S2 only consists of entries and accepts from S1. Events
from S1 are not needed in the environment for S2 because we not using a circular assume-
guarantee rule and are only trying to ensure the S2 satisfies the assumption independent of
the behavior of S1. Accepts and entries are needed in the environment of S2 only so nodes
corresponding to rendezvous are created correctly during TFG construction.

Rather than treat A as a constraint as was done in checking Premise 1, A is treated as a
property. This verification uses the constraints that contain events only in S2. Even though
the environment does not have any events from S1 (those prefixed with “s1”), the VAs,
CFGs, and property need to be relabeled as described previously so that the alphabet of
this subsystem is consistent with the alphabet of the assumption. If this verification does
not result in a property violation, then both Premise 1 and Premise 2 are true, so it can be
concluded that P holds on S1 ‖ S2. If this verification results in a property violation, then
the returned counterexample is examined to determine what should be done next. A query
is made based on this counterexample, as described previously, to determine if P does not
hold on S1 ‖ S2 or if the assumption needs to be refined.

A more detailed description of this approach can be found in Cobleigh [2007].

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library by vis-
iting the following URL: http://www.acm.org/pubs/citations/journals/jn/2007-V-N/p1-Cobleigh.
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This appendix provides detailed data for the experiments described in Section 4. Each
table in this appendix gives information about the performance of monolithic verification,
assume-guarantee reasoning using the generalized decompositions based on the best de-
composition from size 2, and assume-guarantee reasoning using the best decomposition
we were able to find. Recall that we imposed a time bound when exploring some de-
compositions, as described in Section 4.4.1, and for those subjects where this bound was
reached, the best-known decomposition may not be the best decomposition that exists for
that subject.

The Time rows give the number of seconds needed for verification. The |P| rows give
the number of states in the property that was checked. The States rows give the number
of states explored during verification. For the generalized decomposition and the best
decomposition, this number is the maximum number of states explored by a verifier when
answering a query or a conjecture of the L* algorithm. If the number of the states used by
the best decomposition is preceded by a star, this means that the number of states is for the
best-known decomposition, but there may be a better decomposition that explores fewer
states.

In the data for FLAVERS for subject 23 at size 3, the number of states explored by the
best decomposition at size 3 is preceded by a greater than sign. This denotes the fact that
while none of the decompositions at size 3 completed within the time bound we used, we
know that the best decomposition for this property explores at least 100,000 states. We
show the number of states as “OOM” in the cases where the verifier ran out of memory.
For the Best decomposition columns, we show the number of states as “—” in those cases
where we did not attempt to find the best decomposition.

Some rows show data specific to assume-guarantee reasoning. The Premise 1 States and
Premise 2 States rows give the number of states explored while verifying Premise 1 and
Premise 2, respectively. The |A| rows give the size of the learned assumption. The |S1| and
|S2| rows give the number of node in |S1| and |S2| respectively. We do not report the size
of |S1| and |S2| for LTSA because the LTSA models are built on the fly. Thus, S1 and S2
are never built independently, but are always built composed with some other assumption
or property.
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c© 2007 ACM 0000-0000/2007/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, November 2007.



App–2 · Jamieson M. Cobleigh et al.

The majority of these experiments were run on an Intel Xeon 2.2GHz machine with 4Gb
of memory (although a single process could only access 2Gb of memory). This system was
running RedHat Linux version 8.0 with Sun’s JDK version 1.5.0 04-b05. The LTSA data
for the Chiron multiple, Gas Station, Relay, and Smokers systems were from executions
on an Intel Pentium 4 3.2GHz machine with 2Gb of memory. This system was running
Fedora Core 2 with Sun’s JDK version 1.5.0 06-b05.

A. FLAVERS DATA

A.1 Subject 1

Verifier: FLAVERS
Subject: 1
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.91 1.32 1.32
States: 724 325 325
Premise 1 States: 325 325
Premise 2 States: 127 127
|A|: 1 1
|S1|: 51 51
|S2|: 127 127

Verifier: FLAVERS
Subject: 1
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.36 1.77 1.77
States: 2,294 325 325
Premise 1 States: 325 325
Premise 2 States: 238 238
|A|: 1 1
|S1|: 51 51
|S2|: 238 238
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Verifier: FLAVERS
Subject: 1
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 2.90 2.93 2.93
States: 5,922 401 401
Premise 1 States: 325 325
Premise 2 States: 401 401
|A|: 1 1
|S1|: 51 51
|S2|: 401 401

Verifier: FLAVERS
Subject: 1
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 6.83 6.97 —
States: 13,774 654
Premise 1 States: 325
Premise 2 States: 654
|A|: 1
|S1|: 51
|S2|: 654

Verifier: FLAVERS
Subject: 1
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 21.50 22.17 —
States: 28,568 995
Premise 1 States: 325
Premise 2 States: 995
|A|: 1
|S1|: 51
|S2|: 995
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A.2 Subject 2

Verifier: FLAVERS
Subject: 2
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 1.18 1.76 1.76
States: 2,756 3,351 3,351
Premise 1 States: 3,351 3,351
Premise 2 States: 74 74
|A|: 1 1
|S1|: 172 172
|S2|: 74 74

Verifier: FLAVERS
Subject: 2
Size: 3
|P|: 5

Monolithic Generalized Best
Time: 3.12 5.50 5.50
States: 22,938 35,513 35,513
Premise 1 States: 35,513 35,513
Premise 2 States: 121 121
|A|: 1 1
|S1|: 445 445
|S2|: 121 121

Verifier: FLAVERS
Subject: 2
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 26.34 29.93 29.93
States: 202,259 320,239 320,239
Premise 1 States: 320,239 320,239
Premise 2 States: 156 156
|A|: 1 1
|S1|: 1,041 1,041
|S2|: 156 156
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Verifier: FLAVERS
Subject: 2
Size: 5
|P|: 5

Monolithic Generalized Best
Time: 501.10 381.14 —
States: 2,014,415 3,498,885
Premise 1 States: 3,498,885
Premise 2 States: 203
|A|: 1
|S1|: 2,279
|S2|: 203

Verifier: FLAVERS
Subject: 2
Size: 6
|P|: 5

Monolithic Generalized Best
Time: 12,109.85 6,180.33 —
States: 21,681,290 37,530,117
Premise 1 States: 37,530,117
Premise 2 States: 238
|A|: 1
|S1|: 4,601
|S2|: 238

A.3 Subject 3

Verifier: FLAVERS
Subject: 3
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.93 1.38 1.38
States: 877 1,316 1,316
Premise 1 States: 1,316 1,316
Premise 2 States: 74 74
|A|: 1 1
|S1|: 104 104
|S2|: 74 74
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Verifier: FLAVERS
Subject: 3
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.38 2.95 2.95
States: 2,751 4,976 4,976
Premise 1 States: 4,976 4,976
Premise 2 States: 121 121
|A|: 1 1
|S1|: 204 204
|S2|: 121 121

Verifier: FLAVERS
Subject: 3
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 3.04 5.32 5.32
States: 6,751 12,028 12,028
Premise 1 States: 12,028 12,028
Premise 2 States: 156 156
|A|: 1 1
|S1|: 356 356
|S2|: 156 156

Verifier: FLAVERS
Subject: 3
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 7.28 13.43 —
States: 14,543 27,558
Premise 1 States: 27,558
Premise 2 States: 203
|A|: 1
|S1|: 598
|S2|: 203
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Verifier: FLAVERS
Subject: 3
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 23.68 37.19 —
States: 27,613 51,156
Premise 1 States: 51,156
Premise 2 States: 238
|A|: 1
|S1|: 928
|S2|: 238

A.4 Subject 4

Verifier: FLAVERS
Subject: 4
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.93 1.30 1.30
States: 688 1,009 1,009
Premise 1 States: 1,009 1,009
Premise 2 States: 74 74
|A|: 1 1
|S1|: 104 104
|S2|: 74 74

Verifier: FLAVERS
Subject: 4
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.40 2.37 2.37
States: 2,048 3,709 3,709
Premise 1 States: 3,709 3,709
Premise 2 States: 121 121
|A|: 1 1
|S1|: 204 204
|S2|: 121 121
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Verifier: FLAVERS
Subject: 4
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 2.96 5.46 5.46
States: 4,818 8,613 8,613
Premise 1 States: 8,613 8,613
Premise 2 States: 156 156
|A|: 1 1
|S1|: 356 356
|S2|: 156 156

Verifier: FLAVERS
Subject: 4
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 6.68 13.30 —
States: 10,190 19,429
Premise 1 States: 19,429
Premise 2 States: 203
|A|: 1
|S1|: 598
|S2|: 203

Verifier: FLAVERS
Subject: 4
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 23.08 36.41 —
States: 19,056 35,481
Premise 1 States: 35,481
Premise 2 States: 238
|A|: 1
|S1|: 928
|S2|: 238
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A.5 Subject 5

Verifier: FLAVERS
Subject: 5
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 0.96 1.60 1.60
States: 3,557 5,472 5,472
Premise 1 States: 5,472 5,472
Premise 2 States: 103 103
|A|: 1 1
|S1|: 93 93
|S2|: 103 103

Verifier: FLAVERS
Subject: 5
Size: 3
|P|: 6

Monolithic Generalized Best
Time: 6.04 6.08 231.46
States: 220,779 135,706 39,340
Premise 1 States: 135,706 31,898
Premise 2 States: 203 7,238
|A|: 1 5
|S1|: 140 239
|S2|: 203 86

Verifier: FLAVERS
Subject: 5
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 1,423.87 60.04 758.98
States: 23,863,255 2,081,070 133,815
Premise 1 States: 2,081,070 106,095
Premise 2 States: 355 133,815
|A|: 1 5
|S1|: 175 403
|S2|: 355 121
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Verifier: FLAVERS
Subject: 5
Size: 5
|P|: 8

Monolithic Generalized Best
Time: 1,574.86 —
States: OOM 45,357,966
Premise 1 States: 45,357,966
Premise 2 States: 597
|A|: 1
|S1|: 222
|S2|: 597

A.6 Subject 6

Verifier: FLAVERS
Subject: 6
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.95 1.30 1.30
States: 724 325 325
Premise 1 States: 325 325
Premise 2 States: 127 127
|A|: 1 1
|S1|: 51 51
|S2|: 127 127

Verifier: FLAVERS
Subject: 6
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.39 1.78 1.78
States: 2,294 325 325
Premise 1 States: 325 325
Premise 2 States: 238 238
|A|: 1 1
|S1|: 51 51
|S2|: 238 238
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Verifier: FLAVERS
Subject: 6
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 2.37 3.05 3.05
States: 5,922 401 401
Premise 1 States: 325 325
Premise 2 States: 401 401
|A|: 1 1
|S1|: 51 51
|S2|: 401 401

Verifier: FLAVERS
Subject: 6
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 6.79 6.90 —
States: 13,774 654
Premise 1 States: 325
Premise 2 States: 654
|A|: 1
|S1|: 51
|S2|: 654

Verifier: FLAVERS
Subject: 6
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 21.91 21.98 —
States: 28,568 995
Premise 1 States: 325
Premise 2 States: 995
|A|: 1
|S1|: 51
|S2|: 995

ACM Journal Name, Vol. V, No. N, November 2007.



App–12 · Jamieson M. Cobleigh et al.

A.7 Subject 7

Verifier: FLAVERS
Subject: 7
Size: 2
|P|: 7

Monolithic Generalized Best
Time: 1.25 2.34 2.34
States: 4,326 5,299 5,299
Premise 1 States: 5,299 5,299
Premise 2 States: 74 74
|A|: 1 1
|S1|: 153 153
|S2|: 74 74

Verifier: FLAVERS
Subject: 7
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 3.79 6.84 6.84
States: 51,056 79,672 78,791
Premise 1 States: 79,672 78,791
Premise 2 States: 121 121
|A|: 1 1
|S1|: 400 400
|S2|: 121 121

Verifier: FLAVERS
Subject: 7
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 62.48 72.90 74.11
States: 718,341 1,142,369 1,134,987
Premise 1 States: 1,142,369 1,134,987
Premise 2 States: 156 156
|A|: 1 1
|S1|: 953 953
|S2|: 156 156
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Verifier: FLAVERS
Subject: 7
Size: 5
|P|: 7

Monolithic Generalized Best
Time: 2,885.87 1,983.30 —
States: 12,866,528 22,391,566
Premise 1 States: 22,391,566
Premise 2 States: 203
|A|: 1
|S1|: 2,124
|S2|: 203

A.8 Subject 8

Verifier: FLAVERS
Subject: 8
Size: 2
|P|: 2

Monolithic Generalized Best
Time: 1.12 2.19 2.19
States: 2,756 3,351 3,351
Premise 1 States: 3,351 3,351
Premise 2 States: 74 74
|A|: 1 1
|S1|: 174 174
|S2|: 74 74

Verifier: FLAVERS
Subject: 8
Size: 3
|P|: 2

Monolithic Generalized Best
Time: 3.09 5.42 5.42
States: 22,938 35,513 35,513
Premise 1 States: 35,513 35,513
Premise 2 States: 121 121
|A|: 1 1
|S1|: 448 448
|S2|: 121 121

ACM Journal Name, Vol. V, No. N, November 2007.



App–14 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 8
Size: 4
|P|: 2

Monolithic Generalized Best
Time: 24.09 29.97 29.97
States: 202,259 320,239 320,239
Premise 1 States: 320,239 320,239
Premise 2 States: 156 156
|A|: 1 1
|S1|: 1,045 1,045
|S2|: 156 156

Verifier: FLAVERS
Subject: 8
Size: 5
|P|: 2

Monolithic Generalized Best
Time: 501.00 383.37 —
States: 2,014,415 3,498,885
Premise 1 States: 3,498,885
Premise 2 States: 203
|A|: 1
|S1|: 2,284
|S2|: 203

Verifier: FLAVERS
Subject: 8
Size: 6
|P|: 2

Monolithic Generalized Best
Time: 11,846.11 6,108.04 —
States: 21,681,290 37,530,117
Premise 1 States: 37,530,117
Premise 2 States: 238
|A|: 1
|S1|: 4,607
|S2|: 238
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A.9 Subject 9

Verifier: FLAVERS
Subject: 9
Size: 2
|P|: 6

Monolithic Generalized Best
Time: 1.00 3.26 3.26
States: 4,910 4,016 4,016
Premise 1 States: 4,016 4,016
Premise 2 States: 525 525
|A|: 3 3
|S1|: 125 125
|S2|: 61 61

Verifier: FLAVERS
Subject: 9
Size: 3
|P|: 8

Monolithic Generalized Best
Time: 9.74 218.09 218.09
States: 336,026 44,941 44,941
Premise 1 States: 26,862 26,862
Premise 2 States: 16,426 16,426
|A|: 5 5
|S1|: 237 237
|S2|: 108 108

Verifier: FLAVERS
Subject: 9
Size: 4
|P|: 10

Monolithic Generalized Best
Time: 3,232.49 1,433.29 1,826.78
States: 37,526,650 310,553 ∗214,247
Premise 1 States: 86,625 87,197
Premise 2 States: 310,553 214,247
|A|: 6 6
|S1|: 401 405
|S2|: 143 121
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Verifier: FLAVERS
Subject: 9
Size: 5
|P|: 12

Monolithic Generalized Best
Time: 12,881.27 —
States: OOM 8,260,254
Premise 1 States: 284,645
Premise 2 States: 8,260,254
|A|: 8
|S1|: 655
|S2|: 190

Verifier: FLAVERS
Subject: 9
Size: 6
|P|: 14

Monolithic Generalized Best
Time: 51,854.39 —
States: OOM 144,145,585
Premise 1 States: 674,002
Premise 2 States: 144,145,585
|A|: 9
|S1|: 997
|S2|: 225

A.10 Subject 10

Verifier: FLAVERS
Subject: 10
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.04 1.44 1.44
States: 1,521 325 325
Premise 1 States: 325 325
Premise 2 States: 177 177
|A|: 1 1
|S1|: 51 51
|S2|: 177 177
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Verifier: FLAVERS
Subject: 10
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.38 1.99 1.99
States: 3,933 325 325
Premise 1 States: 325 325
Premise 2 States: 308 308
|A|: 1 1
|S1|: 51 51
|S2|: 308 308

Verifier: FLAVERS
Subject: 10
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 2.79 2.81 3.32
States: 8,663 489 488
Premise 1 States: 325 479
Premise 2 States: 489 488
|A|: 1 1
|S1|: 51 61
|S2|: 489 488

Verifier: FLAVERS
Subject: 10
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 5.35 5.56 —
States: 18,389 762
Premise 1 States: 325
Premise 2 States: 762
|A|: 1
|S1|: 51
|S2|: 762
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Verifier: FLAVERS
Subject: 10
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 13.73 13.81 —
States: 35,461 1,121
Premise 1 States: 325
Premise 2 States: 1,121
|A|: 1
|S1|: 51
|S2|: 1,121

A.11 Subject 11

Verifier: FLAVERS
Subject: 11
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 1.76 3.06 3.06
States: 14,797 12,050 12,050
Premise 1 States: 12,050 12,050
Premise 2 States: 109 109
|A|: 1 1
|S1|: 211 211
|S2|: 109 109

Verifier: FLAVERS
Subject: 11
Size: 3
|P|: 5

Monolithic Generalized Best
Time: 7.38 17.64 1,452.82
States: 151,923 132,857 46,581
Premise 1 States: 132,857 42,837
Premise 2 States: 156 5,941
|A|: 1 17
|S1|: 504 267
|S2|: 156 345
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Verifier: FLAVERS
Subject: 11
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 90.41 204.04 7,389.24
States: 1,531,962 1,288,246 ∗100,949
Premise 1 States: 1,288,246 91,136
Premise 2 States: 191 40,235
|A|: 1 21
|S1|: 1,118 385
|S2|: 191 870

Verifier: FLAVERS
Subject: 11
Size: 5
|P|: 5

Monolithic Generalized Best
Time: 1,584.48 4,027.31 —
States: 18,460,786 16,532,689
Premise 1 States: 16,532,689
Premise 2 States: 238
|A|: 1
|S1|: 2,376
|S2|: 238

A.12 Subject 12

Verifier: FLAVERS
Subject: 12
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.09 22.09 22.09
States: 7,586 4,371 4,371
Premise 1 States: 1,002 1,002
Premise 2 States: 4,371 4,371
|A|: 15 15
|S1|: 55 55
|S2|: 168 168
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Verifier: FLAVERS
Subject: 12
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.17 80.92 124.44
States: 29,372 11,790 11,459
Premise 1 States: 2,774 4,965
Premise 2 States: 11,790 11,459
|A|: 20 20
|S1|: 105 126
|S2|: 267 263

Verifier: FLAVERS
Subject: 12
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 4.19 217.23 405.00
States: 80,344 25,387 25,051
Premise 1 States: 6,466 25,051
Premise 2 States: 25,387 24,964
|A|: 25 23
|S1|: 186 236
|S2|: 385 376

Verifier: FLAVERS
Subject: 12
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 10.07 490.46 —
States: 207,926 51,452
Premise 1 States: 13,230
Premise 2 States: 51,452
|A|: 30
|S1|: 307
|S2|: 555
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Verifier: FLAVERS
Subject: 12
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 25.73 1,081.56 —
States: 438,252 91,091
Premise 1 States: 24,506
Premise 2 States: 91,091
|A|: 35
|S1|: 477
|S2|: 762

A.13 Subject 13

Verifier: FLAVERS
Subject: 13
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.08 90.43 90.43
States: 8,560 4,727 4,727
Premise 1 States: 1,411 1,411
Premise 2 States: 4,727 4,727
|A|: 29 29
|S1|: 56 56
|S2|: 168 168

Verifier: FLAVERS
Subject: 13
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.22 261.48 383.71
States: 32,434 12,802 12,362
Premise 1 States: 3,667 6,303
Premise 2 States: 12,802 12,362
|A|: 33 33
|S1|: 106 126
|S2|: 267 263
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Verifier: FLAVERS
Subject: 13
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 3.93 723.20 987.26
States: 90,816 27,754 26,363
Premise 1 States: 8,903 14,035
Premise 2 States: 27,754 26,363
|A|: 42 42
|S1|: 187 207
|S2|: 385 381

Verifier: FLAVERS
Subject: 13
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 10.13 1,702.69 —
States: 230,464 56,271
Premise 1 States: 18,675
Premise 2 States: 56,271
|A|: 51
|S1|: 308
|S2|: 555

Verifier: FLAVERS
Subject: 13
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 26.93 3,708.52 —
States: 494,250 100,001
Premise 1 States: 35,143
Premise 2 States: 100,001
|A|: 60
|S1|: 478
|S2|: 762
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A.14 Subject 14

Verifier: FLAVERS
Subject: 14
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 1.19 1.62 1.62
States: 13,991 5,472 5,472
Premise 1 States: 5,472 5,472
Premise 2 States: 153 153
|A|: 1 1
|S1|: 93 93
|S2|: 153 153

Verifier: FLAVERS
Subject: 14
Size: 3
|P|: 6

Monolithic Generalized Best
Time: 15.35 6.20 463.62
States: 944,001 135,706 ∗89,773
Premise 1 States: 135,706 46,388
Premise 2 States: 273 7,238
|A|: 1 4
|S1|: 140 309
|S2|: 273 86

Verifier: FLAVERS
Subject: 14
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 3,830.06 57.60 2,347.62
States: 98,848,737 2,081,070 ∗191,092
Premise 1 States: 2,081,070 138,655
Premise 2 States: 443 133,815
|A|: 1 5
|S1|: 175 491
|S2|: 443 121
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Verifier: FLAVERS
Subject: 14
Size: 5
|P|: 8

Monolithic Generalized Best
Time: 1,373.83 —
States: OOM 45,357,966
Premise 1 States: 45,357,966
Premise 2 States: 705
|A|: 1
|S1|: 222
|S2|: 705

A.15 Subject 15

Verifier: FLAVERS
Subject: 15
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.06 1.48 1.48
States: 1,521 325 325
Premise 1 States: 325 325
Premise 2 States: 177 177
|A|: 1 1
|S1|: 51 51
|S2|: 177 177

Verifier: FLAVERS
Subject: 15
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.40 1.93 1.93
States: 3,933 325 325
Premise 1 States: 325 325
Premise 2 States: 308 308
|A|: 1 1
|S1|: 51 51
|S2|: 308 308
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Verifier: FLAVERS
Subject: 15
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 2.78 2.84 3.07
States: 8,663 489 488
Premise 1 States: 325 479
Premise 2 States: 489 488
|A|: 1 1
|S1|: 51 61
|S2|: 489 488

Verifier: FLAVERS
Subject: 15
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 5.37 5.48 —
States: 18,389 762
Premise 1 States: 325
Premise 2 States: 762
|A|: 1
|S1|: 51
|S2|: 762

Verifier: FLAVERS
Subject: 15
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 13.66 13.90 —
States: 35,461 1,121
Premise 1 States: 325
Premise 2 States: 1,121
|A|: 1
|S1|: 51
|S2|: 1,121
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App–26 · Jamieson M. Cobleigh et al.

A.16 Subject 16

Verifier: FLAVERS
Subject: 16
Size: 2
|P|: 7

Monolithic Generalized Best
Time: 1.91 3.39 3.39
States: 25,099 20,435 20,435
Premise 1 States: 20,435 20,435
Premise 2 States: 109 109
|A|: 1 1
|S1|: 192 192
|S2|: 109 109

Verifier: FLAVERS
Subject: 16
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 12.50 32.74 17,852.53
States: 382,207 337,455 71,780
Premise 1 States: 337,455 66,012
Premise 2 States: 156 69,445
|A|: 1 64
|S1|: 459 259
|S2|: 156 351

Verifier: FLAVERS
Subject: 16
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 311.40 750.16 197.24
States: 6,466,376 5,499,921 ∗3,165,393
Premise 1 States: 5,499,921 2,685
Premise 2 States: 191 3,165,393
|A|: 1 6
|S1|: 1,030 348
|S2|: 191 903
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Verifier: FLAVERS
Subject: 16
Size: 5
|P|: 7

Monolithic Generalized Best
Time: 11,440.27 28,516.35 —
States: 146,347,904 132,254,739
Premise 1 States: 132,254,739
Premise 2 States: 238
|A|: 1
|S1|: 2,221
|S2|: 238

A.17 Subject 17

Verifier: FLAVERS
Subject: 17
Size: 2
|P|: 2

Monolithic Generalized Best
Time: 1.31 1.67 1.67
States: 7,123 957 957
Premise 1 States: 957 957
Premise 2 States: 168 168
|A|: 1 1
|S1|: 124 124
|S2|: 168 168

Verifier: FLAVERS
Subject: 17
Size: 3
|P|: 2

Monolithic Generalized Best
Time: 3.37 2.76 2.76
States: 54,268 5,941 5,941
Premise 1 States: 5,941 5,941
Premise 2 States: 267 267
|A|: 1 1
|S1|: 348 348
|S2|: 267 267
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Verifier: FLAVERS
Subject: 17
Size: 4
|P|: 2

Monolithic Generalized Best
Time: 20.88 6.41 6.41
States: 431,337 40,235 40,235
Premise 1 States: 40,235 40,235
Premise 2 States: 385 385
|A|: 1 1
|S1|: 874 874
|S2|: 385 385

Verifier: FLAVERS
Subject: 17
Size: 5
|P|: 2

Monolithic Generalized Best
Time: 254.35 27.09 —
States: 4,049,151 304,439
Premise 1 States: 304,439
Premise 2 States: 555
|A|: 1
|S1|: 1,992
|S2|: 555

Verifier: FLAVERS
Subject: 17
Size: 6
|P|: 2

Monolithic Generalized Best
Time: 4,157.57 200.24 —
States: 41,046,169 2,572,615
Premise 1 States: 2,572,615
Premise 2 States: 762
|A|: 1
|S1|: 4,155
|S2|: 762
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A.18 Subject 18

Verifier: FLAVERS
Subject: 18
Size: 2
|P|: 6

Monolithic Generalized Best
Time: 1.49 1.65 1.65
States: 18,981 6,731 6,731
Premise 1 States: 6,731 6,731
Premise 2 States: 153 153
|A|: 1 1
|S1|: 93 93
|S2|: 153 153

Verifier: FLAVERS
Subject: 18
Size: 3
|P|: 8

Monolithic Generalized Best
Time: 26.26 7.60 4,463.78
States: 1,399,453 201,162 ∗111,099
Premise 1 States: 201,162 111,099
Premise 2 States: 273 101,299
|A|: 1 33
|S1|: 140 279
|S2|: 273 121

Verifier: FLAVERS
Subject: 18
Size: 4
|P|: 10

Monolithic Generalized Best
Time: 7,492.12 97.56 4,972.47
States: 152,928,193 3,646,122 ∗341,412
Premise 1 States: 3,646,122 111,705
Premise 2 States: 443 310,553
|A|: 1 6
|S1|: 175 489
|S2|: 443 143
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Verifier: FLAVERS
Subject: 18
Size: 5
|P|: 12

Monolithic Generalized Best
Time: 3,356.53 —
States: OOM 95,201,173
Premise 1 States: 95,201,173
Premise 2 States: 705
|A|: 1
|S1|: 222
|S2|: 705

A.19 Subject 19

Verifier: FLAVERS
Subject: 19
Size: 2
|P|: 4

Monolithic Generalized Best
Time: 1.22 7.05 7.05
States: 13,674 4,306 4,306
Premise 1 States: 4,306 4,306
Premise 2 States: 2,184 2,184
|A|: 8 8
|S1|: 94 94
|S2|: 57 57

Verifier: FLAVERS
Subject: 19
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 6.08 14.72 14.72
States: 346,330 44,602 44,602
Premise 1 States: 6,514 6,514
Premise 2 States: 44,602 44,602
|A|: 8 8
|S1|: 126 126
|S2|: 91 91
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Verifier: FLAVERS
Subject: 19
Size: 4
|P|: 4

Monolithic Generalized Best
Time: 129.20 38.31 578.29
States: 6,814,798 740,840 ∗114,824
Premise 1 States: 8,722 80,704
Premise 2 States: 740,840 114,824
|A|: 8 17
|S1|: 158 168
|S2|: 125 98

Verifier: FLAVERS
Subject: 19
Size: 5
|P|: 4

Monolithic Generalized Best
Time: 3,581.18 310.76 —
States: 117,309,034 11,244,914
Premise 1 States: 10,930
Premise 2 States: 11,244,914
|A|: 8
|S1|: 190
|S2|: 159

A.20 Subject 20

Verifier: FLAVERS
Subject: 20
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.83 1.31 1.31
States: 92 81 81
Premise 1 States: 81 81
Premise 2 States: 79 79
|A|: 1 1
|S1|: 81 81
|S2|: 79 79
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Verifier: FLAVERS
Subject: 20
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 0.87 1.53 1.49
States: 130 115 110
Premise 1 States: 115 110
Premise 2 States: 111 110
|A|: 1 1
|S1|: 115 110
|S2|: 111 110

Verifier: FLAVERS
Subject: 20
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 0.91 1.77 1.75
States: 168 149 146
Premise 1 States: 149 137
Premise 2 States: 143 146
|A|: 1 1
|S1|: 149 137
|S2|: 143 146

Verifier: FLAVERS
Subject: 20
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.06 2.67 1.96
States: 206 183 180
Premise 1 States: 183 163
Premise 2 States: 175 180
|A|: 1 1
|S1|: 183 163
|S2|: 175 180
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Verifier: FLAVERS
Subject: 20
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1.42 3.18 —
States: 244 217
Premise 1 States: 217
Premise 2 States: 207
|A|: 1
|S1|: 217
|S2|: 207

Verifier: FLAVERS
Subject: 20
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 1.16 3.24 —
States: 282 251
Premise 1 States: 251
Premise 2 States: 239
|A|: 1
|S1|: 251
|S2|: 239

Verifier: FLAVERS
Subject: 20
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 1.30 3.93 —
States: 320 285
Premise 1 States: 285
Premise 2 States: 271
|A|: 1
|S1|: 285
|S2|: 271
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Verifier: FLAVERS
Subject: 20
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 1.38 5.48 —
States: 358 319
Premise 1 States: 319
Premise 2 States: 303
|A|: 1
|S1|: 319
|S2|: 303

Verifier: FLAVERS
Subject: 20
Size: 10
|P|: 3

Monolithic Generalized Best
Time: 1.49 6.57 —
States: 396 353
Premise 1 States: 353
Premise 2 States: 335
|A|: 1
|S1|: 353
|S2|: 335

Verifier: FLAVERS
Subject: 20
Size: 20
|P|: 3

Monolithic Generalized Best
Time: 2.97 34.63 —
States: 776 693
Premise 1 States: 693
Premise 2 States: 655
|A|: 1
|S1|: 693
|S2|: 655
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Verifier: FLAVERS
Subject: 20
Size: 30
|P|: 3

Monolithic Generalized Best
Time: 5.54 100.00 —
States: 1,156 1,033
Premise 1 States: 1,033
Premise 2 States: 975
|A|: 1
|S1|: 1,033
|S2|: 975

Verifier: FLAVERS
Subject: 20
Size: 40
|P|: 3

Monolithic Generalized Best
Time: 9.73 230.28 —
States: 1,536 1,373
Premise 1 States: 1,373
Premise 2 States: 1,295
|A|: 1
|S1|: 1,373
|S2|: 1,295

Verifier: FLAVERS
Subject: 20
Size: 50
|P|: 3

Monolithic Generalized Best
Time: 16.57 399.65 —
States: 1,916 1,713
Premise 1 States: 1,713
Premise 2 States: 1,615
|A|: 1
|S1|: 1,713
|S2|: 1,615
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App–36 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 20
Size: 60
|P|: 3

Monolithic Generalized Best
Time: 24.73 729.82 —
States: 2,296 2,053
Premise 1 States: 2,053
Premise 2 States: 1,935
|A|: 1
|S1|: 2,053
|S2|: 1,935

Verifier: FLAVERS
Subject: 20
Size: 70
|P|: 3

Monolithic Generalized Best
Time: 35.87 1,133.15 —
States: 2,676 2,393
Premise 1 States: 2,393
Premise 2 States: 2,255
|A|: 1
|S1|: 2,393
|S2|: 2,255

Verifier: FLAVERS
Subject: 20
Size: 80
|P|: 3

Monolithic Generalized Best
Time: 51.37 1,603.64 —
States: 3,056 2,733
Premise 1 States: 2,733
Premise 2 States: 2,575
|A|: 1
|S1|: 2,733
|S2|: 2,575
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Verifier: FLAVERS
Subject: 20
Size: 90
|P|: 3

Monolithic Generalized Best
Time: 72.20 2,298.14 —
States: 3,436 3,073
Premise 1 States: 3,073
Premise 2 States: 2,895
|A|: 1
|S1|: 3,073
|S2|: 2,895

Verifier: FLAVERS
Subject: 20
Size: 100
|P|: 3

Monolithic Generalized Best
Time: 87.58 3,154.62 —
States: 3,816 3,413
Premise 1 States: 3,413
Premise 2 States: 3,215
|A|: 1
|S1|: 3,413
|S2|: 3,215

Verifier: FLAVERS
Subject: 20
Size: 110
|P|: 3

Monolithic Generalized Best
Time: 112.89 4,324.14 —
States: 4,196 3,753
Premise 1 States: 3,753
Premise 2 States: 3,535
|A|: 1
|S1|: 3,753
|S2|: 3,535
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App–38 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 20
Size: 120
|P|: 3

Monolithic Generalized Best
Time: 166.29 5,548.39 —
States: 4,576 4,093
Premise 1 States: 4,093
Premise 2 States: 3,855
|A|: 1
|S1|: 4,093
|S2|: 3,855

Verifier: FLAVERS
Subject: 20
Size: 130
|P|: 3

Monolithic Generalized Best
Time: 178.96 6,924.19 —
States: 4,956 4,433
Premise 1 States: 4,433
Premise 2 States: 4,175
|A|: 1
|S1|: 4,433
|S2|: 4,175

Verifier: FLAVERS
Subject: 20
Size: 140
|P|: 3

Monolithic Generalized Best
Time: 218.16 8,732.34 —
States: 5,336 4,773
Premise 1 States: 4,773
Premise 2 States: 4,495
|A|: 1
|S1|: 4,773
|S2|: 4,495
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Verifier: FLAVERS
Subject: 20
Size: 150
|P|: 3

Monolithic Generalized Best
Time: 265.35 10,690.95 —
States: 5,716 5,113
Premise 1 States: 5,113
Premise 2 States: 4,815
|A|: 1
|S1|: 5,113
|S2|: 4,815

Verifier: FLAVERS
Subject: 20
Size: 160
|P|: 3

Monolithic Generalized Best
Time: 318.24 12,622.43 —
States: 6,096 5,453
Premise 1 States: 5,453
Premise 2 States: 5,135
|A|: 1
|S1|: 5,453
|S2|: 5,135

Verifier: FLAVERS
Subject: 20
Size: 170
|P|: 3

Monolithic Generalized Best
Time: 378.71 15,294.33 —
States: 6,476 5,793
Premise 1 States: 5,793
Premise 2 States: 5,455
|A|: 1
|S1|: 5,793
|S2|: 5,455
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App–40 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 20
Size: 180
|P|: 3

Monolithic Generalized Best
Time: 434.76 18,818.14 —
States: 6,856 6,133
Premise 1 States: 6,133
Premise 2 States: 5,775
|A|: 1
|S1|: 6,133
|S2|: 5,775

Verifier: FLAVERS
Subject: 20
Size: 190
|P|: 3

Monolithic Generalized Best
Time: 512.63 22,606.63 —
States: 7,236 6,473
Premise 1 States: 6,473
Premise 2 States: 6,095
|A|: 1
|S1|: 6,473
|S2|: 6,095

Verifier: FLAVERS
Subject: 20
Size: 200
|P|: 3

Monolithic Generalized Best
Time: 592.50 28,194.24 —
States: 7,616 6,813
Premise 1 States: 6,813
Premise 2 States: 6,415
|A|: 1
|S1|: 6,813
|S2|: 6,415
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A.21 Subject 21

Verifier: FLAVERS
Subject: 21
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.82 1.11 1.11
States: 970 105 105
Premise 1 States: 105 105
Premise 2 States: 100 100
|A|: 1 1
|S1|: 29 29
|S2|: 100 100

Verifier: FLAVERS
Subject: 21
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 0.87 1.21 1.21
States: 1,991 175 175
Premise 1 States: 175 175
Premise 2 States: 143 143
|A|: 1 1
|S1|: 37 37
|S2|: 143 143

Verifier: FLAVERS
Subject: 21
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.07 1.45 1.45
States: 3,376 263 263
Premise 1 States: 263 263
Premise 2 States: 186 186
|A|: 1 1
|S1|: 45 45
|S2|: 186 186
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App–42 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 21
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.15 1.57 —
States: 5,125 369
Premise 1 States: 369
Premise 2 States: 229
|A|: 1
|S1|: 53
|S2|: 229

Verifier: FLAVERS
Subject: 21
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1.66 1.69 —
States: 7,238 493
Premise 1 States: 493
Premise 2 States: 272
|A|: 1
|S1|: 61
|S2|: 272

Verifier: FLAVERS
Subject: 21
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 1.88 1.86 —
States: 9,715 635
Premise 1 States: 635
Premise 2 States: 315
|A|: 1
|S1|: 69
|S2|: 315
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Verifier: FLAVERS
Subject: 21
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 2.12 2.07 —
States: 12,556 795
Premise 1 States: 795
Premise 2 States: 358
|A|: 1
|S1|: 77
|S2|: 358

Verifier: FLAVERS
Subject: 21
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 2.39 2.26 —
States: 15,761 973
Premise 1 States: 973
Premise 2 States: 401
|A|: 1
|S1|: 85
|S2|: 401

Verifier: FLAVERS
Subject: 21
Size: 10
|P|: 3

Monolithic Generalized Best
Time: 2.69 2.44 —
States: 19,330 1,169
Premise 1 States: 1,169
Premise 2 States: 444
|A|: 1
|S1|: 93
|S2|: 444
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App–44 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 21
Size: 20
|P|: 3

Monolithic Generalized Best
Time: 9.73 6.52 —
States: 75,040 4,119
Premise 1 States: 4,119
Premise 2 States: 874
|A|: 1
|S1|: 173
|S2|: 874

Verifier: FLAVERS
Subject: 21
Size: 30
|P|: 3

Monolithic Generalized Best
Time: 25.59 14.58 —
States: 167,150 8,869
Premise 1 States: 8,869
Premise 2 States: 1,304
|A|: 1
|S1|: 253
|S2|: 1,304

Verifier: FLAVERS
Subject: 21
Size: 40
|P|: 3

Monolithic Generalized Best
Time: 55.33 27.74 —
States: 295,660 15,419
Premise 1 States: 15,419
Premise 2 States: 1,734
|A|: 1
|S1|: 333
|S2|: 1,734
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Verifier: FLAVERS
Subject: 21
Size: 50
|P|: 3

Monolithic Generalized Best
Time: 103.95 49.96 —
States: 460,570 23,769
Premise 1 States: 23,769
Premise 2 States: 2,164
|A|: 1
|S1|: 413
|S2|: 2,164

Verifier: FLAVERS
Subject: 21
Size: 60
|P|: 3

Monolithic Generalized Best
Time: 178.81 75.82 —
States: 661,880 33,919
Premise 1 States: 33,919
Premise 2 States: 2,594
|A|: 1
|S1|: 493
|S2|: 2,594

Verifier: FLAVERS
Subject: 21
Size: 70
|P|: 3

Monolithic Generalized Best
Time: 295.96 118.80 —
States: 899,590 45,869
Premise 1 States: 45,869
Premise 2 States: 3,024
|A|: 1
|S1|: 573
|S2|: 3,024
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Verifier: FLAVERS
Subject: 21
Size: 80
|P|: 3

Monolithic Generalized Best
Time: 466.45 165.87 —
States: 1,173,700 59,619
Premise 1 States: 59,619
Premise 2 States: 3,454
|A|: 1
|S1|: 653
|S2|: 3,454

Verifier: FLAVERS
Subject: 21
Size: 90
|P|: 3

Monolithic Generalized Best
Time: 692.35 228.75 —
States: 1,484,210 75,169
Premise 1 States: 75,169
Premise 2 States: 3,884
|A|: 1
|S1|: 733
|S2|: 3,884

Verifier: FLAVERS
Subject: 21
Size: 100
|P|: 3

Monolithic Generalized Best
Time: 1,013.25 312.71 —
States: 1,831,120 92,519
Premise 1 States: 92,519
Premise 2 States: 4,314
|A|: 1
|S1|: 813
|S2|: 4,314
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Verifier: FLAVERS
Subject: 21
Size: 110
|P|: 3

Monolithic Generalized Best
Time: 1,445.31 398.00 —
States: 2,214,430 111,669
Premise 1 States: 111,669
Premise 2 States: 4,744
|A|: 1
|S1|: 893
|S2|: 4,744

Verifier: FLAVERS
Subject: 21
Size: 120
|P|: 3

Monolithic Generalized Best
Time: 1,949.96 514.45 —
States: 2,634,140 132,619
Premise 1 States: 132,619
Premise 2 States: 5,174
|A|: 1
|S1|: 973
|S2|: 5,174

Verifier: FLAVERS
Subject: 21
Size: 130
|P|: 3

Monolithic Generalized Best
Time: 2,560.25 637.53 —
States: 3,090,250 155,369
Premise 1 States: 155,369
Premise 2 States: 5,604
|A|: 1
|S1|: 1,053
|S2|: 5,604
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App–48 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 21
Size: 140
|P|: 3

Monolithic Generalized Best
Time: 3,433.82 794.48 —
States: 3,582,760 179,919
Premise 1 States: 179,919
Premise 2 States: 6,034
|A|: 1
|S1|: 1,133
|S2|: 6,034

Verifier: FLAVERS
Subject: 21
Size: 150
|P|: 3

Monolithic Generalized Best
Time: 4,053.01 947.55 —
States: 4,111,670 206,269
Premise 1 States: 206,269
Premise 2 States: 6,464
|A|: 1
|S1|: 1,213
|S2|: 6,464

Verifier: FLAVERS
Subject: 21
Size: 160
|P|: 3

Monolithic Generalized Best
Time: 5,165.89 1,161.40 —
States: 4,676,980 234,419
Premise 1 States: 234,419
Premise 2 States: 6,894
|A|: 1
|S1|: 1,293
|S2|: 6,894
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Verifier: FLAVERS
Subject: 21
Size: 170
|P|: 3

Monolithic Generalized Best
Time: 6,347.57 1,371.60 —
States: 5,278,690 264,369
Premise 1 States: 264,369
Premise 2 States: 7,324
|A|: 1
|S1|: 1,373
|S2|: 7,324

Verifier: FLAVERS
Subject: 21
Size: 180
|P|: 3

Monolithic Generalized Best
Time: 7,654.96 1,644.28 —
States: 5,916,800 296,119
Premise 1 States: 296,119
Premise 2 States: 7,754
|A|: 1
|S1|: 1,453
|S2|: 7,754

Verifier: FLAVERS
Subject: 21
Size: 190
|P|: 3

Monolithic Generalized Best
Time: 9,145.25 1,921.71 —
States: 6,591,310 329,669
Premise 1 States: 329,669
Premise 2 States: 8,184
|A|: 1
|S1|: 1,533
|S2|: 8,184
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App–50 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 21
Size: 200
|P|: 3

Monolithic Generalized Best
Time: 10,788.36 2,189.26 —
States: 7,302,220 365,019
Premise 1 States: 365,019
Premise 2 States: 8,614
|A|: 1
|S1|: 1,613
|S2|: 8,614

A.22 Subject 22

Verifier: FLAVERS
Subject: 22
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.98 11.74 11.74
States: 7,075 2,847 2,847
Premise 1 States: 2,573 2,573
Premise 2 States: 2,425 2,425
|A|: 11 11
|S1|: 91 91
|S2|: 56 56

Verifier: FLAVERS
Subject: 22
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.07 26.73 26.73
States: 41,163 6,674 6,674
Premise 1 States: 5,698 5,698
Premise 2 States: 4,153 4,153
|A|: 11 11
|S1|: 134 134
|S2|: 64 64
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Verifier: FLAVERS
Subject: 22
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 4.74 55.22 55.22
States: 108,448 11,649 11,649
Premise 1 States: 9,769 9,769
Premise 2 States: 6,247 6,247
|A|: 11 11
|S1|: 177 177
|S2|: 72 72

Verifier: FLAVERS
Subject: 22
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 10.36 112.86 —
States: 224,575 17,964
Premise 1 States: 14,920
Premise 2 States: 8,707
|A|: 11
|S1|: 220
|S2|: 80

Verifier: FLAVERS
Subject: 22
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 23.30 204.12 —
States: 402,720 25,631
Premise 1 States: 21,151
Premise 2 States: 11,533
|A|: 11
|S1|: 263
|S2|: 88
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App–52 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 22
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 42.17 345.53 —
States: 656,059 34,711
Premise 1 States: 28,462
Premise 2 States: 14,725
|A|: 11
|S1|: 306
|S2|: 96

Verifier: FLAVERS
Subject: 22
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 71.64 541.39 —
States: 997,768 45,208
Premise 1 States: 36,853
Premise 2 States: 18,283
|A|: 11
|S1|: 349
|S2|: 104

Verifier: FLAVERS
Subject: 22
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 132.60 788.78 —
States: 1,441,023 57,089
Premise 1 States: 46,324
Premise 2 States: 22,207
|A|: 11
|S1|: 392
|S2|: 112
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Verifier: FLAVERS
Subject: 22
Size: 10
|P|: 3

Monolithic Generalized Best
Time: 182.07 1,223.93 —
States: 1,999,000 70,354
Premise 1 States: 56,875
Premise 2 States: 26,497
|A|: 11
|S1|: 435
|S2|: 120

Verifier: FLAVERS
Subject: 22
Size: 20
|P|: 3

Monolithic Generalized Best
Time: 3,240.06 15,442.27 —
States: 16,787,200 279,124
Premise 1 States: 221,785
Premise 2 States: 89,527
|A|: 11
|S1|: 865
|S2|: 200

Verifier: FLAVERS
Subject: 22
Size: 30
|P|: 3

Monolithic Generalized Best
Time: 17,204.01 75,064.47 —
States: 57,541,200 626,294
Premise 1 States: 494,695
Premise 2 States: 189,157
|A|: 11
|S1|: 1,295
|S2|: 280
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App–54 · Jamieson M. Cobleigh et al.

Verifier: FLAVERS
Subject: 22
Size: 40
|P|: 3

Monolithic Generalized Best
Time: 59,555.44 224,231.86 —
States: 137,437,000 1,111,864
Premise 1 States: 875,605
Premise 2 States: 325,387
|A|: 11
|S1|: 1,725
|S2|: 360

Verifier: FLAVERS
Subject: 22
Size: 47
|P|: 3

Monolithic Generalized Best
Time: 450,262.72 444,746.59 —
States: 223,709,179 1,534,111
Premise 1 States: 1,206,502
Premise 2 States: 442,525
|A|: 11
|S1|: 2,026
|S2|: 416

Verifier: FLAVERS
Subject: 22
Size: 48
|P|: 3

Monolithic Generalized Best
Time: 480,113.89 —
States: OOM 1,599,968
Premise 1 States: 1,258,093
Premise 2 States: 460,723
|A|: 11
|S1|: 2,069
|S2|: 424
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Verifier: FLAVERS
Subject: 22
Size: 50
|P|: 3

Monolithic Generalized Best
Time: 539,672.30 —
States: OOM 1,735,834
Premise 1 States: 1,364,515
Premise 2 States: 498,217
|A|: 11
|S1|: 2,155
|S2|: 440

A.23 Subject 23

Verifier: FLAVERS
Subject: 23
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.81 28.55 28.55
States: 201 3,621 3,621
Premise 1 States: 3,621 3,621
Premise 2 States: 24 24
|A|: 20 20
|S1|: 33 33
|S2|: 17 17

Verifier: FLAVERS
Subject: 23
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 4.97 —
States: 25,557 OOM > 100,000
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A.24 Subject 24

Verifier: FLAVERS
Subject: 24
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.80 2.10 2.10
States: 237 174 174
Premise 1 States: 149 149
Premise 2 States: 131 131
|A|: 8 8
|S1|: 23 23
|S2|: 28 28

Verifier: FLAVERS
Subject: 24
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.24 81.96 17.97
States: 5,271 6,462 2,699
Premise 1 States: 5,953 2,699
Premise 2 States: 1,345 1,402
|A|: 44 21
|S1|: 44 43
|S2|: 43 43

Verifier: FLAVERS
Subject: 24
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 3.67 13,880.79 101.26
States: 56,022 646,453 14,897
Premise 1 States: 646,453 8,349
Premise 2 States: 2,940 14,003
|A|: 252 43
|S1|: 69 49
|S2|: 53 67
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Verifier: FLAVERS
Subject: 24
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 41.66 842.24
States: 618,069 OOM 143,978
Premise 1 States: 143,978
Premise 2 States: 29,600
|A|: 67
|S1|: 79
|S2|: 75

Verifier: FLAVERS
Subject: 24
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1,322.30 —
States: 7,209,228 OOM

A.25 Subject 25

Verifier: FLAVERS
Subject: 25
Size: 2
|P|: 4

Monolithic Generalized Best
Time: 0.85 268.79 268.79
States: 515 4,424 4,424
Premise 1 States: 4,300 4,300
Premise 2 States: 4,424 4,424
|A|: 64 64
|S1|: 44 44
|S2|: 52 52
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Verifier: FLAVERS
Subject: 25
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 1.74 3,927.27
States: 12,395 OOM ∗1,007,640
Premise 1 States: 13,024
Premise 2 States: 1,007,640
|A|: 153
|S1|: 62
|S2|: 122

A.26 Subject 26

Verifier: FLAVERS
Subject: 26
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.84 347.39 347.39
States: 515 4,292 4,292
Premise 1 States: 4,017 4,017
Premise 2 States: 4,292 4,292
|A|: 67 67
|S1|: 44 44
|S2|: 52 52

Verifier: FLAVERS
Subject: 26
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.70 1,203.44
States: 12,395 OOM ∗1,007,640
Premise 1 States: 9,414
Premise 2 States: 1,007,640
|A|: 97
|S1|: 62
|S2|: 122
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A.27 Subject 27

Verifier: FLAVERS
Subject: 27
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.87 193.57 193.57
States: 555 4,861 4,861
Premise 1 States: 4,769 4,769
Premise 2 States: 4,861 4,861
|A|: 53 53
|S1|: 46 46
|S2|: 53 53

Verifier: FLAVERS
Subject: 27
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.83 4,435.84
States: 13,087 OOM 334,463
Premise 1 States: 20,635
Premise 2 States: 334,463
|A|: 136
|S1|: 76
|S2|: 104
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A.28 Subject 28

Verifier: FLAVERS
Subject: 28
Size: 2
|P|: 4

Monolithic Generalized Best
Time: 0.86 318.07 318.07
States: 555 5,983 5,983
Premise 1 States: 3,307 3,307
Premise 2 States: 5,983 5,983
|A|: 61 61
|S1|: 43 43
|S2|: 51 51

Verifier: FLAVERS
Subject: 28
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.74 56.86
States: 12,639 OOM ∗1,039,727
Premise 1 States: 826
Premise 2 States: 1,039,727
|A|: 24
|S1|: 40
|S2|: 121
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A.29 Subject 29

Verifier: FLAVERS
Subject: 29
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.78 47.33 47.33
States: 511 7,593 7,593
Premise 1 States: 7,593 7,593
Premise 2 States: 1,711 1,711
|A|: 21 21
|S1|: 56 56
|S2|: 43 43

Verifier: FLAVERS
Subject: 29
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.61 1,726.48
States: 13,256 OOM ∗2,178,726
Premise 1 States: 6,121
Premise 2 States: 812,111
|A|: 95
|S1|: 65
|S2|: 122
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A.30 Subject 30

Verifier: FLAVERS
Subject: 30
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.82 210.18 210.18
States: 563 4,560 4,560
Premise 1 States: 4,560 4,560
Premise 2 States: 2,847 2,847
|A|: 61 61
|S1|: 42 42
|S2|: 51 51

Verifier: FLAVERS
Subject: 30
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.79 1,150.09
States: 13,865 OOM ∗288,447
Premise 1 States: 15,012
Premise 2 States: 288,447
|A|: 75
|S1|: 74
|S2|: 102
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A.31 Subject 31

Verifier: FLAVERS
Subject: 31
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.81 485.14 485.14
States: 479 4,124 4,124
Premise 1 States: 3,919 3,919
Premise 2 States: 3,860 3,860
|A|: 77 77
|S1|: 43 43
|S2|: 52 52

Verifier: FLAVERS
Subject: 31
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.52 415.80
States: 11,747 OOM ∗812,111
Premise 1 States: 3,573
Premise 2 States: 812,111
|A|: 57
|S1|: 59
|S2|: 122
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A.32 Subject 32

Verifier: FLAVERS
Subject: 32
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 0.78 1.01 1.01
States: 127 173 173
Premise 1 States: 173 173
Premise 2 States: 41 41
|A|: 1 1
|S1|: 42 42
|S2|: 41 41

Verifier: FLAVERS
Subject: 32
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 0.89 1.12 1.12
States: 425 281 281
Premise 1 States: 281 281
Premise 2 States: 88 88
|A|: 1 1
|S1|: 64 64
|S2|: 88 88

Verifier: FLAVERS
Subject: 32
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 0.97 1.35 1.35
States: 937 419 419
Premise 1 States: 419 419
Premise 2 States: 147 147
|A|: 1 1
|S1|: 94 94
|S2|: 147 147
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Verifier: FLAVERS
Subject: 32
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.36 1.83 —
States: 1,757 587
Premise 1 States: 587
Premise 2 States: 222
|A|: 1
|S1|: 132
|S2|: 222

Verifier: FLAVERS
Subject: 32
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 2.02 2.20 —
States: 2,957 785
Premise 1 States: 785
Premise 2 States: 313
|A|: 1
|S1|: 178
|S2|: 313

Verifier: FLAVERS
Subject: 32
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 2.46 3.11 —
States: 4,609 1,013
Premise 1 States: 1,013
Premise 2 States: 420
|A|: 1
|S1|: 232
|S2|: 420
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Verifier: FLAVERS
Subject: 32
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 4.03 4.37 —
States: 6,785 1,271
Premise 1 States: 1,271
Premise 2 States: 543
|A|: 1
|S1|: 294
|S2|: 543

Verifier: FLAVERS
Subject: 32
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 5.83 7.00 —
States: 9,557 1,559
Premise 1 States: 1,559
Premise 2 States: 682
|A|: 1
|S1|: 364
|S2|: 682

Verifier: FLAVERS
Subject: 32
Size: 10
|P|: 3

Monolithic Generalized Best
Time: 9.99 10.47 —
States: 12,997 1,877
Premise 1 States: 1,877
Premise 2 States: 837
|A|: 1
|S1|: 442
|S2|: 837
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Verifier: FLAVERS
Subject: 32
Size: 20
|P|: 3

Monolithic Generalized Best
Time: 321.78 201.86 —
States: 99,977 6,707
Premise 1 States: 6,707
Premise 2 States: 3,267
|A|: 1
|S1|: 1,662
|S2|: 3,267

Verifier: FLAVERS
Subject: 32
Size: 30
|P|: 3

Monolithic Generalized Best
Time: 2,750.24 1,420.56 —
States: 332,957 14,537
Premise 1 States: 14,537
Premise 2 States: 7,297
|A|: 1
|S1|: 3,682
|S2|: 7,297

Verifier: FLAVERS
Subject: 32
Size: 32
|P|: 3

Monolithic Generalized Best
Time: 27,833.92 1,942.04 —
States: 403,410 16,463
Premise 1 States: 16,463
Premise 2 States: 8,295
|A|: 1
|S1|: 4,182
|S2|: 8,295
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Verifier: FLAVERS
Subject: 32
Size: 33
|P|: 3

Monolithic Generalized Best
Time: 2,380.88 —
States: OOM 17,471
Premise 1 States: 17,471
Premise 2 States: 8,818
|A|: 1
|S1|: 4,444
|S2|: 8,818

Verifier: FLAVERS
Subject: 32
Size: 35
|P|: 3

Monolithic Generalized Best
Time: 3,122.41 —
States: OOM 19,577
Premise 1 States: 19,577
Premise 2 States: 9,912
|A|: 1
|S1|: 4,992
|S2|: 9,912

B. LTSA DATA

B.1 Subject 1

Verifier: LTSA
Subject: 1
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 2.18 2.37 2.37
States: 137 54 54
Premise 1 States: 54 54
Premise 2 States: 38 38
|A|: 1 1
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Verifier: LTSA
Subject: 1
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 3.55 3.14 3.14
States: 638 422 422
Premise 1 States: 95 95
Premise 2 States: 422 422
|A|: 1 1

Verifier: LTSA
Subject: 1
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 4.85 5.12 5.12
States: 2,535 2,021 2,021
Premise 1 States: 154 154
Premise 2 States: 2,021 2,021
|A|: 1 1

Verifier: LTSA
Subject: 1
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 31.42 31.47 —
States: 40,127 42,071
Premise 1 States: 321
Premise 2 States: 42,071
|A|: 1
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B.2 Subject 2

Verifier: LTSA
Subject: 2
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 2.23 2.35 2.35
States: 137 54 54
Premise 1 States: 39 39
Premise 2 States: 54 54
|A|: 1 1

Verifier: LTSA
Subject: 2
Size: 3
|P|: 5

Monolithic Generalized Best
Time: 2.99 3.17 3.17
States: 638 423 423
Premise 1 States: 423 423
Premise 2 States: 95 95
|A|: 1 1

Verifier: LTSA
Subject: 2
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 5.02 5.05 5.05
States: 2,535 2,022 2,022
Premise 1 States: 2,022 2,022
Premise 2 States: 154 154
|A|: 1 1
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Verifier: LTSA
Subject: 2
Size: 5
|P|: 5

Monolithic Generalized Best
Time: 31.59 32.82 —
States: 40,127 42,072
Premise 1 States: 42,072
Premise 2 States: 321
|A|: 1

B.3 Subject 3

Verifier: LTSA
Subject: 3
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 2.29 2.36 2.36
States: 202 64 64
Premise 1 States: 64 64
Premise 2 States: 54 54
|A|: 1 1

Verifier: LTSA
Subject: 3
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.96 3.14 3.14
States: 908 679 679
Premise 1 States: 679 679
Premise 2 States: 95 95
|A|: 1 1
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Verifier: LTSA
Subject: 3
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 4.85 5.11 5.11
States: 3,448 3,062 3,062
Premise 1 States: 3,062 3,062
Premise 2 States: 154 154
|A|: 1 1

Verifier: LTSA
Subject: 3
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 31.41 33.57 —
States: 54,667 63,262
Premise 1 States: 63,262
Premise 2 States: 321
|A|: 1

B.4 Subject 4

Verifier: LTSA
Subject: 4
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 2.27 2.42 2.42
States: 195 59 59
Premise 1 States: 59 59
Premise 2 States: 54 54
|A|: 1 1
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Verifier: LTSA
Subject: 4
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.95 3.14 3.14
States: 820 583 583
Premise 1 States: 583 583
Premise 2 States: 95 95
|A|: 1 1

Verifier: LTSA
Subject: 4
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 4.77 4.99 4.99
States: 3,117 2,672 2,672
Premise 1 States: 2,672 2,672
Premise 2 States: 154 154
|A|: 1 1

Verifier: LTSA
Subject: 4
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 31.62 33.27 —
States: 47,523 52,504
Premise 1 States: 52,504
Premise 2 States: 321
|A|: 1
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B.5 Subject 5

Verifier: LTSA
Subject: 5
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 2.30 2.42 2.42
States: 137 54 54
Premise 1 States: 54 54
Premise 2 States: 38 38
|A|: 1 1

Verifier: LTSA
Subject: 5
Size: 3
|P|: 6

Monolithic Generalized Best
Time: 3.07 3.20 3.20
States: 638 422 422
Premise 1 States: 95 95
Premise 2 States: 422 422
|A|: 1 1

Verifier: LTSA
Subject: 5
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 4.86 4.94 4.94
States: 2,535 2,021 2,021
Premise 1 States: 154 154
Premise 2 States: 2,021 2,021
|A|: 1 1
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Verifier: LTSA
Subject: 5
Size: 5
|P|: 8

Monolithic Generalized Best
Time: 31.14 31.52 —
States: 40,127 42,071
Premise 1 States: 321
Premise 2 States: 42,071
|A|: 1

B.6 Subject 6

Verifier: LTSA
Subject: 6
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 2.24 2.29 2.29
States: 137 54 54
Premise 1 States: 39 39
Premise 2 States: 54 54
|A|: 1 1

Verifier: LTSA
Subject: 6
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.96 3.09 2.73
States: 638 423 422
Premise 1 States: 423 95
Premise 2 States: 95 422
|A|: 1 1
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Verifier: LTSA
Subject: 6
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 5.03 5.30 4.57
States: 2,535 2,022 2,021
Premise 1 States: 2,022 154
Premise 2 States: 154 2,021
|A|: 1 1

Verifier: LTSA
Subject: 6
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 31.53 32.74 —
States: 40,127 42,072
Premise 1 States: 42,072
Premise 2 States: 321
|A|: 1

B.7 Subject 7

Verifier: LTSA
Subject: 7
Size: 2
|P|: 7

Monolithic Generalized Best
Time: 2.33 2.42 2.42
States: 150 62 62
Premise 1 States: 62 62
Premise 2 States: 54 54
|A|: 1 1
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Verifier: LTSA
Subject: 7
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 3.08 3.02 3.02
States: 662 654 654
Premise 1 States: 654 654
Premise 2 States: 95 95
|A|: 1 1

Verifier: LTSA
Subject: 7
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 4.80 5.24 5.24
States: 2,579 3,089 3,089
Premise 1 States: 3,089 3,089
Premise 2 States: 154 154
|A|: 1 1

Verifier: LTSA
Subject: 7
Size: 5
|P|: 7

Monolithic Generalized Best
Time: 31.75 33.29 —
States: 40,238 63,893
Premise 1 States: 63,893
Premise 2 States: 321
|A|: 1
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B.8 Subject 9

Verifier: LTSA
Subject: 9
Size: 2
|P|: 6

Monolithic Generalized Best
Time: 2.32 2.30 2.30
States: 137 54 54
Premise 1 States: 54 54
Premise 2 States: 38 38
|A|: 1 1

Verifier: LTSA
Subject: 9
Size: 3
|P|: 8

Monolithic Generalized Best
Time: 2.90 3.14 3.14
States: 638 422 422
Premise 1 States: 95 95
Premise 2 States: 422 422
|A|: 1 1

Verifier: LTSA
Subject: 9
Size: 4
|P|: 10

Monolithic Generalized Best
Time: 4.97 5.11 5.11
States: 2,535 2,021 2,021
Premise 1 States: 154 154
Premise 2 States: 2,021 2,021
|A|: 1 1
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Verifier: LTSA
Subject: 9
Size: 5
|P|: 12

Monolithic Generalized Best
Time: 32.16 31.56 —
States: 40,127 42,071
Premise 1 States: 321
Premise 2 States: 42,071
|A|: 1

B.9 Subject 10

Verifier: LTSA
Subject: 10
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.00 1.16 1.16
States: 794 176 176
Premise 1 States: 176 176
Premise 2 States: 102 102
|A|: 1 1

Verifier: LTSA
Subject: 10
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.13 1.23 1.33
States: 2,974 1,122 802
Premise 1 States: 364 802
Premise 2 States: 1,122 66
|A|: 1 1

ACM Journal Name, Vol. V, No. N, November 2007.



App–80 · Jamieson M. Cobleigh et al.

Verifier: LTSA
Subject: 10
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.44 1.49 1.68
States: 10,920 5,559 1,513
Premise 1 States: 703 1,513
Premise 2 States: 5,559 327
|A|: 1 1

Verifier: LTSA
Subject: 10
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 3.25 3.10 —
States: 126,067 129,228
Premise 1 States: 1,905
Premise 2 States: 129,228
|A|: 1

B.10 Subject 11

Verifier: LTSA
Subject: 11
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 1.02 2.91 2.91
States: 794 200 200
Premise 1 States: 185 185
Premise 2 States: 200 200
|A|: 9 9
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Verifier: LTSA
Subject: 11
Size: 3
|P|: 5

Monolithic Generalized Best
Time: 1.13 11.54 1.42
States: 2,974 2,770 1,241
Premise 1 States: 373 1,241
Premise 2 States: 2,770 17
|A|: 21 1

Verifier: LTSA
Subject: 11
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 1.44 40.57 18.42
States: 10,920 18,638 3,629
Premise 1 States: 712 1,540
Premise 2 States: 18,638 1,030
|A|: 39 18

Verifier: LTSA
Subject: 11
Size: 5
|P|: 5

Monolithic Generalized Best
Time: 3.41 —
States: 126,067 OOM

B.11 Subject 12

Verifier: LTSA
Subject: 12
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.10 2.86 2.86
States: 1,150 265 265
Premise 1 States: 265 265
Premise 2 States: 198 198
|A|: 9 9
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Verifier: LTSA
Subject: 12
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.13 12.57 6.77
States: 3,984 2,736 1,096
Premise 1 States: 492 1,096
Premise 2 States: 2,736 141
|A|: 25 10

Verifier: LTSA
Subject: 12
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.50 46.02 16.45
States: 13,798 18,370 1,862
Premise 1 States: 860 1,862
Premise 2 States: 18,370 922
|A|: 45 19

Verifier: LTSA
Subject: 12
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 3.55 218.60 —
States: 156,746 138,537
Premise 1 States: 2,101
Premise 2 States: 138,537
|A|: 122
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B.12 Subject 13

Verifier: LTSA
Subject: 13
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.02 1.12 1.12
States: 1,072 238 238
Premise 1 States: 238 238
Premise 2 States: 102 102
|A|: 1 1

Verifier: LTSA
Subject: 13
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.13 1.23 1.27
States: 3,693 1,122 1,003
Premise 1 States: 454 1,003
Premise 2 States: 1,122 66
|A|: 1 1

Verifier: LTSA
Subject: 13
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.47 1.50 1.66
States: 12,919 5,559 1,752
Premise 1 States: 812 1,752
Premise 2 States: 5,559 327
|A|: 1 1
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Verifier: LTSA
Subject: 13
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 3.39 3.08 —
States: 144,052 129,228
Premise 1 States: 2,042
Premise 2 States: 129,228
|A|: 1

B.13 Subject 14

Verifier: LTSA
Subject: 14
Size: 2
|P|: 5

Monolithic Generalized Best
Time: 1.16 1.12 1.12
States: 794 176 176
Premise 1 States: 176 176
Premise 2 States: 102 102
|A|: 1 1

Verifier: LTSA
Subject: 14
Size: 3
|P|: 6

Monolithic Generalized Best
Time: 1.12 1.23 1.31
States: 2,974 1,122 802
Premise 1 States: 364 802
Premise 2 States: 1,122 66
|A|: 1 1

ACM Journal Name, Vol. V, No. N, November 2007.



Breaking Up is Hard to Do · App–85

Verifier: LTSA
Subject: 14
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 1.51 1.52 1.62
States: 10,920 5,559 1,513
Premise 1 States: 703 1,513
Premise 2 States: 5,559 327
|A|: 1 1

Verifier: LTSA
Subject: 14
Size: 5
|P|: 8

Monolithic Generalized Best
Time: 3.31 3.01 —
States: 126,067 129,228
Premise 1 States: 1,905
Premise 2 States: 129,228
|A|: 1

B.14 Subject 15

Verifier: LTSA
Subject: 15
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.01 1.13 1.13
States: 794 176 176
Premise 1 States: 176 176
Premise 2 States: 102 102
|A|: 1 1
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Verifier: LTSA
Subject: 15
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.14 1.24 1.32
States: 2,974 1,122 802
Premise 1 States: 364 802
Premise 2 States: 1,122 66
|A|: 1 1

Verifier: LTSA
Subject: 15
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.46 1.53 1.57
States: 10,920 5,559 1,513
Premise 1 States: 703 1,513
Premise 2 States: 5,559 327
|A|: 1 1

Verifier: LTSA
Subject: 15
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 3.24 3.07 —
States: 126,067 129,228
Premise 1 States: 1,905
Premise 2 States: 129,228
|A|: 1
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B.15 Subject 16

Verifier: LTSA
Subject: 16
Size: 2
|P|: 7

Monolithic Generalized Best
Time: 1.02 1.07 1.07
States: 874 395 395
Premise 1 States: 395 395
Premise 2 States: 290 290
|A|: 1 1

Verifier: LTSA
Subject: 16
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 1.13 1.27 1.44
States: 3,189 1,990 1,325
Premise 1 States: 1,352 1,325
Premise 2 States: 1,990 17
|A|: 1 1

Verifier: LTSA
Subject: 16
Size: 4
|P|: 7

Monolithic Generalized Best
Time: 1.43 1.57 15.99
States: 11,359 5,625 4,131
Premise 1 States: 5,625 2,731
Premise 2 States: 5,172 434
|A|: 1 16
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Verifier: LTSA
Subject: 16
Size: 5
|P|: 7

Monolithic Generalized Best
Time: 3.29 3.17 —
States: 127,790 63,985
Premise 1 States: 33,686
Premise 2 States: 63,985
|A|: 1

B.16 Subject 18

Verifier: LTSA
Subject: 18
Size: 2
|P|: 6

Monolithic Generalized Best
Time: 1.01 1.13 1.13
States: 794 176 176
Premise 1 States: 176 176
Premise 2 States: 102 102
|A|: 1 1

Verifier: LTSA
Subject: 18
Size: 3
|P|: 8

Monolithic Generalized Best
Time: 1.12 1.24 1.32
States: 2,974 1,122 802
Premise 1 States: 364 802
Premise 2 States: 1,122 66
|A|: 1 1
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Verifier: LTSA
Subject: 18
Size: 4
|P|: 10

Monolithic Generalized Best
Time: 1.50 1.57 1.68
States: 10,920 5,559 1,513
Premise 1 States: 703 1,513
Premise 2 States: 5,559 327
|A|: 1 1

Verifier: LTSA
Subject: 18
Size: 5
|P|: 12

Monolithic Generalized Best
Time: 3.35 3.08 —
States: 126,067 129,228
Premise 1 States: 1,905
Premise 2 States: 129,228
|A|: 1

B.17 Subject 19

Verifier: LTSA
Subject: 19
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.06 1.19 1.19
States: 117 272 272
Premise 1 States: 233 233
Premise 2 States: 272 272
|A|: 1 1
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Verifier: LTSA
Subject: 19
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.19 1.34 1.47
States: 825 2,752 1,932
Premise 1 States: 961 1,932
Premise 2 States: 2,752 1,306
|A|: 1 1

Verifier: LTSA
Subject: 19
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.40 1.71 1.67
States: 4,905 26,624 11,882
Premise 1 States: 2,745 11,882
Premise 2 States: 26,624 3,776
|A|: 1 1

Verifier: LTSA
Subject: 19
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.86 4.25 —
States: 25,893 249,856
Premise 1 States: 6,311
Premise 2 States: 249,856
|A|: 1

Verifier: LTSA
Subject: 19
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 3.47 41.74 —
States: 125,469 2,293,760
Premise 1 States: 12,577
Premise 2 States: 2,293,760
|A|: 1
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Verifier: LTSA
Subject: 19
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 8.51 1,749.56 —
States: 570,321 20,709,376
Premise 1 States: 22,653
Premise 2 States: 20,709,376
|A|: 1

Verifier: LTSA
Subject: 19
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 37.46 —
States: 2,467,665 OOM

B.18 Subject 20

Verifier: LTSA
Subject: 20
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.06 1.22 1.22
States: 117 272 272
Premise 1 States: 233 233
Premise 2 States: 272 272
|A|: 1 1

Verifier: LTSA
Subject: 20
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.17 1.32 1.41
States: 825 2,752 1,932
Premise 1 States: 961 1,932
Premise 2 States: 2,752 1,306
|A|: 1 1
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Verifier: LTSA
Subject: 20
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.40 1.63 1.62
States: 4,905 26,624 11,882
Premise 1 States: 2,745 11,882
Premise 2 States: 26,624 3,776
|A|: 1 1

Verifier: LTSA
Subject: 20
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.91 4.22 —
States: 25,893 249,856
Premise 1 States: 6,311
Premise 2 States: 249,856
|A|: 1

Verifier: LTSA
Subject: 20
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 3.42 42.78 —
States: 125,469 2,293,760
Premise 1 States: 12,577
Premise 2 States: 2,293,760
|A|: 1

Verifier: LTSA
Subject: 20
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 8.72 1,759.91 —
States: 570,321 20,709,376
Premise 1 States: 22,653
Premise 2 States: 20,709,376
|A|: 1

ACM Journal Name, Vol. V, No. N, November 2007.



Breaking Up is Hard to Do · App–93

Verifier: LTSA
Subject: 20
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 36.03 —
States: 2,467,665 OOM

B.19 Subject 21

Verifier: LTSA
Subject: 21
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.05 1.18 1.18
States: 117 272 272
Premise 1 States: 233 233
Premise 2 States: 272 272
|A|: 1 1

Verifier: LTSA
Subject: 21
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.17 1.45 1.42
States: 825 2,752 1,932
Premise 1 States: 961 1,932
Premise 2 States: 2,752 1,306
|A|: 1 1

Verifier: LTSA
Subject: 21
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.63 1.99 1.69
States: 4,905 26,624 11,882
Premise 1 States: 2,745 11,882
Premise 2 States: 26,624 3,776
|A|: 1 1
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Verifier: LTSA
Subject: 21
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.95 4.26 —
States: 25,893 249,856
Premise 1 States: 6,311
Premise 2 States: 249,856
|A|: 1

Verifier: LTSA
Subject: 21
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 3.49 42.92 —
States: 125,469 2,293,760
Premise 1 States: 12,577
Premise 2 States: 2,293,760
|A|: 1

Verifier: LTSA
Subject: 21
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 8.92 1,751.77 —
States: 570,321 20,709,376
Premise 1 States: 22,653
Premise 2 States: 20,709,376
|A|: 1

Verifier: LTSA
Subject: 21
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 36.90 —
States: 2,467,665 OOM
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B.20 Subject 22

Verifier: LTSA
Subject: 22
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.07 1.19 1.19
States: 117 899 899
Premise 1 States: 899 899
Premise 2 States: 9 9
|A|: 1 1

Verifier: LTSA
Subject: 22
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.19 1.34 1.34
States: 825 7,082 7,082
Premise 1 States: 7,082 7,082
Premise 2 States: 81 81
|A|: 1 1

Verifier: LTSA
Subject: 22
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.41 1.70 1.70
States: 4,905 30,935 30,935
Premise 1 States: 30,935 30,935
Premise 2 States: 729 729
|A|: 1 1
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Verifier: LTSA
Subject: 22
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 2.05 2.50 —
States: 25,893 97,004
Premise 1 States: 97,004
Premise 2 States: 6,561
|A|: 1

Verifier: LTSA
Subject: 22
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 3.46 4.59 —
States: 125,469 246,347
Premise 1 States: 246,347
Premise 2 States: 59,049
|A|: 1

Verifier: LTSA
Subject: 22
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 8.49 13.41 —
States: 570,321 540,854
Premise 1 States: 540,854
Premise 2 States: 531,441
|A|: 1

Verifier: LTSA
Subject: 22
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 36.13 122.26 —
States: 2,467,665 4,782,969
Premise 1 States: 1,067,567
Premise 2 States: 4,782,969
|A|: 1
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Verifier: LTSA
Subject: 22
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 294.72 —
States: 10,267,965 OOM

B.21 Subject 23

Verifier: LTSA
Subject: 23
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 4.42 7.03 —
States: 52 130
Premise 1 States: 111
Premise 2 States: 36
|A|: 10

Verifier: LTSA
Subject: 23
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 3.68 359.20 359.20
States: 2,857 924,345 924,345
Premise 1 States: 39 39
Premise 2 States: 924,345 924,345
|A|: 38 38
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B.22 Subject 24

Verifier: LTSA
Subject: 24
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.51 1.07 1.07
States: 18 12 12
Premise 1 States: 12 12
Premise 2 States: 4 4
|A|: 1 1

Verifier: LTSA
Subject: 24
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 0.90 1.17 3.28
States: 55 125 42
Premise 1 States: 43 40
Premise 2 States: 6 38
|A|: 3 13

Verifier: LTSA
Subject: 24
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.05 1.83 12.77
States: 144 412 112
Premise 1 States: 109 112
Premise 2 States: 6 109
|A|: 3 55
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Verifier: LTSA
Subject: 24
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.04 2.73 26.38
States: 349 1,159 244
Premise 1 States: 259 112
Premise 2 States: 6 244
|A|: 3 55

Verifier: LTSA
Subject: 24
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1.04 3.45 —
States: 810 3,020
Premise 1 States: 593
Premise 2 States: 6
|A|: 3

Verifier: LTSA
Subject: 24
Size: 7
|P|: 3

Monolithic Generalized Best
Time: 1.08 4.50 —
States: 1,831 7,652
Premise 1 States: 1,327
Premise 2 States: 6
|A|: 3

Verifier: LTSA
Subject: 24
Size: 8
|P|: 3

Monolithic Generalized Best
Time: 1.09 7.12 —
States: 4,068 18,608
Premise 1 States: 2,925
Premise 2 States: 6
|A|: 3
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Verifier: LTSA
Subject: 24
Size: 9
|P|: 3

Monolithic Generalized Best
Time: 1.20 14.16 —
States: 8,929 43,856
Premise 1 States: 6,379
Premise 2 States: 6
|A|: 3

B.23 Subject 25

Verifier: LTSA
Subject: 25
Size: 2
|P|: 4

Monolithic Generalized Best
Time: 0.99 20.39 20.39
States: 41 115 115
Premise 1 States: 109 109
Premise 2 States: 96 96
|A|: 61 61

Verifier: LTSA
Subject: 25
Size: 3
|P|: 7

Monolithic Generalized Best
Time: 1.08 83.44 83.44
States: 97 1,681 1,681
Premise 1 States: 239 239
Premise 2 States: 1,681 1,681
|A|: 127 127
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Verifier: LTSA
Subject: 25
Size: 4
|P|: 11

Monolithic Generalized Best
Time: 1.22 557.38 —
States: 181 55,453
Premise 1 States: 457
Premise 2 States: 55,453
|A|: 230

Verifier: LTSA
Subject: 25
Size: 5
|P|: 16

Monolithic Generalized Best
Time: 1.33 —
States: 296 OOM

B.24 Subject 26

Verifier: LTSA
Subject: 26
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.02 41.14 41.14
States: 41 80 80
Premise 1 States: 80 80
Premise 2 States: 77 77
|A|: 61 61

Verifier: LTSA
Subject: 26
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.12 104.20
States: 97 OOM 1,681
Premise 1 States: 195
Premise 2 States: 1,681
|A|: 104
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Verifier: LTSA
Subject: 26
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 1.19 —
States: 181 OOM

B.25 Subject 27

Verifier: LTSA
Subject: 27
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.01 12.79 12.79
States: 41 96 96
Premise 1 States: 79 79
Premise 2 States: 96 96
|A|: 45 45

Verifier: LTSA
Subject: 27
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.06 46.94 68.73
States: 97 1,681 1,517
Premise 1 States: 241 140
Premise 2 States: 1,681 1,517
|A|: 91 113

Verifier: LTSA
Subject: 27
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.22 153.54 —
States: 181 55,453
Premise 1 States: 586
Premise 2 States: 55,453
|A|: 153
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Verifier: LTSA
Subject: 27
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.32 —
States: 296 OOM

B.26 Subject 28

Verifier: LTSA
Subject: 28
Size: 2
|P|: 4

Monolithic Generalized Best
Time: 1.02 12.67 12.67
States: 41 96 96
Premise 1 States: 79 79
Premise 2 States: 96 96
|A|: 45 45

Verifier: LTSA
Subject: 28
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.09 43.44 228.19
States: 97 1,681 958
Premise 1 States: 171 428
Premise 2 States: 1,681 958
|A|: 91 149

Verifier: LTSA
Subject: 28
Size: 4
|P|: 4

Monolithic Generalized Best
Time: 1.18 119.17 —
States: 181 55,453
Premise 1 States: 316
Premise 2 States: 55,453
|A|: 153
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Verifier: LTSA
Subject: 28
Size: 5
|P|: 4

Monolithic Generalized Best
Time: 1.32 386.87 —
States: 296 2,458,887
Premise 1 States: 526
Premise 2 States: 2,458,887
|A|: 231

Verifier: LTSA
Subject: 28
Size: 6
|P|: 4

Monolithic Generalized Best
Time: 1.55 —
States: 445 OOM

B.27 Subject 29

Verifier: LTSA
Subject: 29
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.10 6.54 6.54
States: 41 95 95
Premise 1 States: 48 48
Premise 2 States: 95 95
|A|: 22 22

Verifier: LTSA
Subject: 29
Size: 3
|P|: 4

Monolithic Generalized Best
Time: 1.10 108.23 161.37
States: 97 1,087 958
Premise 1 States: 262 239
Premise 2 States: 1,087 958
|A|: 92 81
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Verifier: LTSA
Subject: 29
Size: 4
|P|: 5

Monolithic Generalized Best
Time: 1.22 —
States: 181 OOM

B.28 Subject 30

Verifier: LTSA
Subject: 30
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.01 13.67 13.67
States: 41 132 132
Premise 1 States: 63 63
Premise 2 States: 96 96
|A|: 39 39

Verifier: LTSA
Subject: 30
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 2.12 71.65 248.45
States: 97 1,681 958
Premise 1 States: 151 428
Premise 2 States: 1,681 958
|A|: 83 149

Verifier: LTSA
Subject: 30
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.22 221.80 —
States: 181 55,453
Premise 1 States: 283
Premise 2 States: 55,453
|A|: 134
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Verifier: LTSA
Subject: 30
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.35 —
States: 296 OOM

B.29 Subject 31

Verifier: LTSA
Subject: 31
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.03 1.13 1.13
States: 41 96 96
Premise 1 States: 96 96
Premise 2 States: 48 48
|A|: 1 1

Verifier: LTSA
Subject: 31
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.07 1.27 1.27
States: 97 900 900
Premise 1 States: 320 320
Premise 2 States: 900 900
|A|: 1 1

Verifier: LTSA
Subject: 31
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.22 1.64 —
States: 181 22,464
Premise 1 States: 960
Premise 2 States: 22,464
|A|: 1
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Verifier: LTSA
Subject: 31
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.33 8.78 —
States: 296 691,488
Premise 1 States: 2,688
Premise 2 States: 691,488
|A|: 1

Verifier: LTSA
Subject: 31
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1.55 1,387.08 —
States: 445 25,165,824
Premise 1 States: 7,168
Premise 2 States: 25,165,824
|A|: 1

B.30 Subject 32

Verifier: LTSA
Subject: 32
Size: 2
|P|: 3

Monolithic Generalized Best
Time: 1.01 1.13 1.13
States: 41 88 88
Premise 1 States: 88 88
Premise 2 States: 64 64
|A|: 1 1
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Verifier: LTSA
Subject: 32
Size: 3
|P|: 3

Monolithic Generalized Best
Time: 1.10 1.26 1.34
States: 97 1,000 900
Premise 1 States: 344 368
Premise 2 States: 1,000 900
|A|: 1 1

Verifier: LTSA
Subject: 32
Size: 4
|P|: 3

Monolithic Generalized Best
Time: 1.22 1.58 —
States: 181 20,736
Premise 1 States: 1,216
Premise 2 States: 20,736
|A|: 1

Verifier: LTSA
Subject: 32
Size: 5
|P|: 3

Monolithic Generalized Best
Time: 1.31 9.33 —
States: 296 537,824
Premise 1 States: 3,968
Premise 2 States: 537,824
|A|: 1

Verifier: LTSA
Subject: 32
Size: 6
|P|: 3

Monolithic Generalized Best
Time: 1.57 634.20 —
States: 445 16,777,216
Premise 1 States: 12,160
Premise 2 States: 16,777,216
|A|: 1
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