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A Data Flow Oriented Program Testing Strategy

JANUSZ W. LASKI AND BOGDAN KOREL

Abstract—Some properties of a program data flow can be used to
guide program testing. The presented approach aims to exercise use-
definition chains that appear in the program. Two such data oriented
testing strategies are proposed; the first involves checking liveness of
every definition of a variable at the point(s) of its possible use; the
second deals with liveness of vectors of variables treated as arguments
to an instruction or program block. Reliability of these strategies is
discussed with respect to a program containing an error.

Index Terms—Control flow, data context, data environment, data
flow, data oriented testing, program testing, liveness, variable definition.

I. INTRODUCTION

HILE planning a program testing procedure the follow-

_ ing questions arise: 1) which parts of the program to

test, 2) how to determine the program input data to exercise

those parts, and 3) how to interpret the observed intermediate

or final results to assess (in)correctness of the program and
eventually locate an error(s).

Possible solutions to the first problem are known as testing
strategies. The second and third questions are referred to as
the test data selection and evaluation problems, respectively.
While both the test-data selection and test evaluation problems
fall into the category of semantic analysis, the testing strategy
is often chosen on purely structural grounds. In most cases,
however, such a strategy is defined in terms of the control
structure of the program to be tested. This applies to actual
testing as well as to symbolic testing [1]-[4]. Data flow
analysis is another potential source of structural information
about a program, which seems to have been unexplored, at
least as far as actual testing is concerned.” Clearly, there exist
methods for detecting possible anomalies, or inconsistencies
in program data flow, either through static analysis of the text
of a program [6], [7] or through its run-time instrumentation
[5]; however, data flow itself has not been used to guide the
testing procedure except perhaps, its use as an error-localization
tool [8]. :

In this paper an attempt is undertaken to employ some
properties of data flow as a criterion for test path selection.
The essential notions introduced are the data environment and
data context. These notions are defined at the statement and
block level of a program. A testing strategy can be determined
to exercise those control paths along which all chosen elements

Manuscript received December 22, 1980; revised March 8, 1982.

J. W. Laski is with the School of Engineering and Computer Science,
Oakland University, Rochester, MI 48063.

B. Korel is with the School of Engineering and Computer Science,
Oakland University, Rochester, M1 48063, on leave from the Institute
of Control Systems, Katowice, Poland.

of the data environment or data context are activated.” Two
such strategies are proposed in Section V and brief discussion
on their reliability follows in Section VI. The first is based
on the data environment and the second on the data context.
These strategies can be applied either at the statement level or
at the block level. The considerations are illustrated by an
example of a program with an error (Section II). This is
followed by application of some typical control oriented
testing strategies to that program and discussion of their
reliability (Section III).

Definitions: In the following, the control graph G=(N,A)
of a program is a directed, connected graph having a unique
entry node, en €N and unique exit node, ex EN. A node
n €N represents either a'single instruction (instruction level)
or a block (block level). A block is a single-entry single-exit
sequence of instructions which are always executed together.
Every instruction in a block, with perhaps the exception of
the first instruction, has exactly one predecessor and, with
the exception of the last instruction, exactly one successor.

An arc a € A is a pair (n,m) of modes from N which repre-
sents a possible transfer of control from n to m. A path in
the graph is an ordered sequence a,, a5, * * -, ax of arcs from
A such that 1) the first node in @, is en, 2) the last node in
ay, is ex, 3) forany two adjacent arcsa; = (n,m) and a;,; = (n*,
m'), m=n'. A path is executable (or feasible) if there exists
input data which causes the path te be traversed during pro-
gram execution. Otherwise, the path is unexecutable (or
infeasible). :

II. AN EXAMPLE

The program in Fig. 1 is a modified version of a sorting
program from [2]. The program is supposed to carry out a
simple sort of array a[0:N] in descending order. The inner
loop around instructions i through i;, finds the largest
element of the subarray a[R1:N]. Thatelement is then copied
into RO while R3 points to its location in a. The outer loop
is supposed .to swap a(R1) and a(R3); the completion of the
outer loop body assures that the subarray 2[0:R1- 1] has
been sorted and a[R1 - 1] is greater than or equal to any
element of a[R1:N]. .

The Error and its Manifestation: There is a missing reinitial-
ization of R3 to R1 at the beginning of the inner loop. There-
fore, if at the beginning of some iteration of the inner loop,
a(R1) is the largest element in g[R1:N], then R3 is not reset
and retains its old value. The old value can be that from a
previous execution of -the inner loop during which R3 was
reset or the initial value of R3 if a[0:R1 - 1] was initially
sorted and its elements were not less than those in a[R1:N].
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array a[0:N]
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Definitions

Tsuperscripts

indicate defi-

ig IN(N,a) al,nt nition number)
by l
i1 R3:=0 R31
Li2 R1:=0 R11
la
» i3 while R1<N do
ig RO:=a(R1) ROl
bz 4 ‘
is R2:=R1+1 Rel
-\l "missing  R3:=R1" "R3M
_”iéﬂ while R2 < N do
ba
— 7 if a(R2)>R0
ig RO:=a(R2) R02
b3 l
ig R3:=R2 R32
l end if
bg -
— i1 R2:=R2+1 R22
_ end while
11141 R2:=a(R1) R23
112 a(R1):=R0 a2
bg '
i13 a(R3):=R2 a3
i14 R1:=R1+1 R12
'—*-J end while
i15 4.J stop

Fig. 1. A modified version of the sorting program, its control graph
and definitions of variables associated with particular instructions;
instruction i; not required if the missing instruction R3:=R1 is

present.

Consequently, when a(R1) and a(R3) are being swapped by
the sequence iy, through i3 the current value of a(R1) over-
writes a(R3). Unless some conditions are met the element
a(R3) will be lost. To illustrate this phenomenon suppose
that N =4 and the initial value of a is (5, 7, 8, 1, 2). After
the first iteration of the outer loop a becomes (8, 7, 5, 1, 2)
but after the next complete execution of the inner loop there
is R3=2, R1=1, and RO=a(R1)=7. Thus, the swapping
~sequence leads toa =(8, 7, 7, 1, 2) and the initial entry a(0) = 5
will be lost. Note that under correct conditions (i.e.,if R3:=R1
had existed) there would have been R1=R3=1 and the
swapping would have involved the same memory location.
Finally, when the program terminates we have a sorted array
(8, 7, 7, 2. 1) which, however, is not a permutation of the
original one.” '
In the original version of the program in [2], instruction
i1 :R3 =0 is missing because it is not necessary if the program

IThe loss of the initial value of a(0) (i.e., 5) is caused by the fact
that the sequence iyy through iy3 does not actually swap a(R1) and
a(R3) because RO is taken as the value of a(R3). Had i, been written
as a(R1) :=a(R3) the final value of the array would have been (8, 5, 7,
2, 1. :

is correct, i.e., if reinitializing instruction R3 := R1 is not miss-
ing. However, a data flow anomaly analysis would perhaps
detect this as an uninitialized variable being referenced. There-
fore, to avoid this trivial case instruction i; has been inserted
into the program. This is equivalent to the case when a com-
piler sets the initial values of certain types to zero; in such a
case, however, a static code analysis would still issue a warning
of a possible data flow anomaly, although no run-time anomaly
would really occur. :
Error Detection: The necessary although not sufficient
condition for the error to be detected either upon the termina-
tion of the program or at some intermediate step of its exe-
cution is to provide input data which causes the control of the
program to traverse a path which 1) at least twice iterates the
outer loop and 2) before passing the segment 7;; throughi,q
at some iteration of the outer loop, has not passed through
the segment ig-i;o at the same iteration of the outer loop.
However, not all the input data which cause execution of
such a path will necessarily cause the error to show up. Clearly,
in some cases the final values of matrix a will be correct, i.e.,
the matrix will be sorted and its elements will be a permuta-
tion of its initial values. This happens if either 1) the elements
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that are being interchanged by instructions i;; to ;3 are equal
(i.e., a(R1) = a(R3)) or 2) the value of R3 is equal to the cur-
rent value of R1. The latter case might occur if a(R1 + 1) was
the largest element of subarray a(R1:N) examined during
the previous execution of the inner loop (cf. [2]).

A path whose execution might lead to eventual detection of
an error will be referred to as an error-sensitive path. If an
error is always detected along such a path the latter is called
an error-revealing path. In the case of our program no error-
revealing path exists, though the error can be detected if an
error-sensitive path is traversed and the program input data
[i.e., a(0:N)] does not satisfy the above error-masking
conditions 1) and 2).

A testing technique is called reliable for an error if its
application guarantees that the error will always be detected
(cf. [1], [2]). In light of this definition a reliable testing
strategy must lead to exercising at least one error-revealing
path. In the case of our example program no error-revealing
path exists so there is no reliable testing strategy for this
program. Therefore, we adopt a weaker definition of a viable
or weakly reliable strategy which requires that at least one
error-sensitive path in the program be traversed. In the next
section we show application of some of the control-oriented
strategies to our example program.

III. CoNnTROL FLOW ORIENTED STRATEGIES

Path Testing [1]: Each executable path through a program
is tested at least once.

For the example program this strategy is viable because there
exist paths which are error-sensitive. For example, for the
initial array @ = (5, 7, 8, 1, 2) an error-sensitive path is exe-
cuted because upon termination of the program an incorrectly
sorted array a=(8, 7, 7, 2, 1) is returned. There is a finite
number of paths in the program that increase as V, the size of
the array, increases. However, even for a reasonably small V,
the number of paths grows so rapidly that the path testing
strategy becomes impractical.

Branch Testing [16]: Each branch in the program is tested
at least once. The strategy is not viable because there are paths
that are not error-sensitive though they satisfy the requirement
of the strategy. For example, for initial array a = (8,2, 4,0, 1)
there is a path such that every branch is executed and the out-
put array is sorted correctly i.e., on termination @ = (8, 4, 2,
1, 0). It can be shown that for any input data which causes
execution of this path, the output array is sorted correctly.

Boundary-Interior Testing [4]: A boundary test of a loop
is a test which causes the loop to be entered but not iterated.
An interior test causes a loop to be entered and then iterated
at least once. For the sorting program there are only interior
tests of the loops unless N =0. The strategy is not weakly
reliable because it might, like branch testing, generate an
error-insensitive path.

IV. DaTA FLow MODELING

Let 7 be a simple instruction in a program with x,,x,,- -,
X as its arguments, i.e., those variables whose values are used
by i to carry out the computation specified by i. 7 can be
either an assignment instruction (e.g., y:=F(x;,* - -, Xz)), a
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test instruction (e.g., if p(x;, * - - , X)), an output data instruc-
tion (e.g., write (x;,* - -, xz)) or a procedure call, providing
that the input variables of that call are uniquely identifiable.
“Use” of a variable occurs therefore in an instruction in which
its value is first used before being eventually changed.

Let d(x) = [x',x%, -] be set of definitions of variable x
in the program. A definition of a variable occurs in an instruc-
tion which assigns a value to that variable. It can be an assign-
ment instruction, an input data instruction or a procedure
call. It should be noted that a procedure call instruction is
treated as a black box with a set of input variables and a set
of output variables; it is also assumed that during each exe-
cution of a procedure call all input variables are used and all
output variables are defined (in fact it might not be true). We
say that definition x* of variable x is /ive at i if there exists
a control path from x* to i along which x is not redefined
(cf. [10]-[15]).

For example, for the program schemata in Fig. 2 where sub-
sequent deﬁnitions of variables are marked with superscripts,
definition y? is 11ve at i, and i while y? is not because it is
overwrltten by y2.

If x* is live at i then x* can possibly be used by 7 as an input
value. Clearly, the requirement that a control path exists from

x* to iis of purely structural nature; in fact under normal
operating conditions that path might not be feasible, i.e., it
might not be executable. Determining path feasibility is there-
fore a semantic issue and cannot be done through static text
analysis only.

The set of all live definitions of all input variables of instruc-
tion i will be referred to as its data environment and denoted
by DE(J).

For example, instruction 7,3 in the sorting porgram has the
following data environment:

DE(iy3) = [R23,R3',R3?].
The above notion of data environment is a simple model of
the data flow in a program. It expresses the relationships
between definitions and uses of the variables taken separately
(cf. the notion of use-definition chain in [11]).

However, execution of an instruction with n arguments,
n =1, involves simultaneous use of an n-tuple of definitions
of input variables from the data environment. This fact is
formally expressed by the following notion of data context,
which is a more complete model of the data flow in a program.
By an elementary data context of an instruction i that uses
a set of variables X(@) =[xy, X5, -, Xx,] we mean a set
ec(i) = [x1 L X2 e x’;,"] of definitions of all variables from
X(i) such that there exists a control path from the beginning
of the program to i and all the definitions from ec(7) are live
at i when the path reaches i.

In other words, an elementary context of an instruction is
a tuple of definitions of all arguments of that instruction that
can possibly be used if a particular control path is executed;
such a path will be referred to as a testing or activating path of
the context.

By the data context DC(i) of instruction i we mean the set
of all its elementary contexts.

The above definition of an elementary context does not in-
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y3

Fig, 2. A program schemata.

volve any ordering of the data definitions appearing in that
context. '

However, every activating path of a elementary context does
impose such an ordering; clearly this is the order in which
those definitions appear along that activating path. This gives
rise to the notion of: the ordered elementary data context.
The latter is an ordered sequence of definitions from ec(?)
such that there exists a control path from the program begin-
ning to i along which those definitions are activated in the
order specified by that sequence and are not overwritten when
the control path reaches i.

Consider, for example, the program in Fig. 2 for which

DC(Z4) =[(xlay2),(xl ,yS)’ (x2,y2), (x2’y3)] .

The following is the set ODC(i;) of the ordered elementary
contexts of iy :
ODC(is) = [(x', »?), ', ¥*), %, x?), 62, %), (3, x?)].

It is clear that two elementary contexts from ODC(i) might
differ only in ordering of otherwise identical definitions, as in
the case of (x2, y3) and (3, x2) from ODC(i,).

As far as the sorting program is concerned there exists only
one possible order of each elementary data context.

The following is the list of the data contexts of all but these
instructions in the program which have no input variables:

DC(is) = [(R1',N1), (R1%,N1)]

DC(iy) = [(a*,R1"), (&%, R1%)]

DC(is) = [(R1'), (R1%)]

DC(is) = [(R2',NY), (R2?,NY)]

DC(i;) = [(a*, RO, R2Y), (', RO, R2?), (¢*, RO%, R2?),
(@, R0', R2"), (¢, R0, R2?), (a®,R0O?, R2%)]

DC(ig) = [(a*, R2"), (a',R2?), (@, R2"), (¢®,R2?)]

DC(iy) = [(R2Y), (R2%)]
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DC(iy0) = DC(iy)

Dc(ll 1) = [(al ,Rll)’ (asaRlz)]

DC(iy,) = [(R1*, ROY), (R1', R0%), (R12, ROY),
(R12,R0%)]

DC(iy5) = [(R3',R2%), (R32, R2%)]

DC(iy4) = [(R1Y), (R1%)].

While deriving these contexts it has been assumed that an
operation on an array element involves both the array variable
as a whole and the index variable as well.

The above notions of the data environment and data context
have been defined with respect to the statement level of a pro-
gram. However, they might be also- extended to the block
level. To define the data environment and data context for
a block one has to determine the input and output variables
of a block. -

A program variable is an input variable of a block if it is
referenced within the block before it is assigned a new value
in the block (if any). A variable is an output variable of a
block if it is defined within the block. A block consisting of
a single conditional is assumed to have input variables only.

A block can be viewed as a multiargument, multiresult
instruction. A single variable in a block can be defined several
times by the instructions contributing to the block. Therefore,
by definition of an output variable of a block we- shall mean
the cumulative effect of all definitions of that variable within
the block rather than a single (e.g., the last) definition in the
block. For example, the instruction-level definitions 2> and 4*
in our sorting program are replaced by the single definition
a? at the block level.

With this interpretation of a block-oriented definition of a
variable we can apply the notions of liveness, data environment
and data context to the block level rather than to the state-
ment level. : C

A block definition x* of a variable x in block bi is live at
block bj if there exists a control path from bi to bj along
which x is not redefined. The set of all live definitions of all
input variables of block bj isreferred to as its data environment
and denoted by DE(bj). For example, block b5 in the sorting
program has the following data environment:

DE(bS) = [a%, a®>,R1',R1%, R0, R0O?, R3!, R3?]
whose elements, with the exception of @, incidently coincide
with the instruction-level definitions of the variables involved.

By an elementary data context of block b with X(b) = [x,,
Xz,° ", X,] as the set of its input variables we mean a set
ec(b) = [xi1, xi2, - - -, xi"] of definitions of all variables from
X(b) such that there exists a control path from the beginning
of the program to b and all the definitions from ec(b) are live
at b when that path reaches b.

By the data context DC(b) of block b we mean the set of all
it elementary data contexts.

The following is the list of data contexts of all blocks of

the sorting program except those which have no input
variables:

DC(a) = DC(i5)
DC(b2) = [(a*, R1'), (a3, R1%)]
DC(B) = DC(is)
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DC(v) = DC(i)
DC(b3) = [(a*,R2Y), (a', R2?), (a®, R2Y), (a®, R2?)]
DC(b4) = DC(i; 0)
DC(bS) = [(a*, RO, R3!, R1'), (a', RO, R32, R1Y),
(a2, RO, R3! R1%), (a2, RO!, R3%, R1%),
(a2, R0?, R3%, R1%)].

One can also define an ordered elementary data context of a
block analogously to the ordered data context of an instruction.

V. DATA FLow BASED TESTING STRATEGIES

The notions of data environment and data context intro-
duced in the previous section are particular models of data
flow in a program. They capture the different relationships
between the data definitions and their uses. The data environ-
ment and the data context can be used to guide the testing
procedure. Depending upon the choice of data flow model
one can obtain different testing strategies. A testing strategy
would then aim towards exercising some control paths along
which the elements of a chosen data flow model are “‘acti-
vated.” In the following, two such strategies are considered.
The first refers to the data environment while the latter to
the data context. These strategies can be applied either to
the instruction level or the block level of a program.

Strategy 1

This strategy requires that liveness of each definition from
the data environment of every instruction (block) be tested
at least once. By the liveness of the definition at an instruc-
tion (block) we mean the fact that the definition is live at
the instruction (block) during execution of the program.

Strategy 11

This strategy requires that each elementary data context of
every instruction (block) be tested at least once.

One can also consider a modified version of Strategy II
which requires that each ordered elementary data context of
every instruction (block) be tested at least once.

These strategies do not impose other restrictions on the
choice of control paths which activate given definition of con-
text. A set of paths which satisfy the requirements of a strategy
is said to be a testing set for that strategy. Usually, no unique
testing set can be determined by these strategies unless some
additional criteria, for example, the shortest path requirement,
is assumed.

As it happens in control oriented testing, the data oriented
testing strategy is also of purely structural character. Clearly
the aim of such a strategy is to exercise those paths in the pro-
gram which activate certain use-definition chains in the data
flow. The data environment strategy (Strategy I) employs for
that purpose chains involving single variables only, while the
data context approach (Strategy II) deals with chains involving
vectors of simultaneously used variables. However, in both
cases the uses in question are of potential character, because
for some of them their testing paths might not be feasible.

It is therefore the programmer’s responsibility to provide
input data which cause the elements of a testing path set to
be exercised. A path that is found infeasible might be so due
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to the design of the program and might not necessarily be
symptomatic of error. In contrast, a feasible path might not
be so in a correct design and its feasibility might indicate
presence of an error. In any case, however, selection of input
data for the testing set of a testing strategy fallsin the category
of semantic program analysis and its automatization still seems
to be a distant goal, although some significant steps in this
direction have been recently explored (cf. symbolic execution
(11, 121.

In what follows we briefly discuss viability of the two data
oriented testing strategies when applied to our sorting program.
Because the number of testing paths is quite large in both cases
we do not embark on finding all of them but instead we con-
centrate on the possibility of finding an error-sensitive one
among them.

Strategy I

This strategy is not viable for the sorting program because
it does not guarantee execution of an error-sensitive path.
However, because it seems to be the simplest application of
data flow to testing it is of interest to ask when it might be
reliable. An answer to this question is illustrated by the
following fragments of a program in which two definitions
of variable x, x! and x2, can be used by the same instruction i:

if p then

x:=0 X!
else

x:=f(x) 'x¥
end if
if g then

iy:=g(a,y)x
end if

If definition x! islive ati then the “zero division” error occurs.
Strategy I is viable for this error by forcing the liveness pre-
serving path to be executed. Control flow oriented strategies
might not guarantee detection of the error except for the path
testing strategy.

Strategy 11

Unlike the data environment strategy this strategy involves
testing simultaneous liveness of all variables contributing to
the input set of an instruction or block. It is weakly reliable
for the error when applied to the block level. To see this,
consider the following elementary data context of block b5,

ec(b5) = (R3!,4%,R1%, ROY)
which appears in its “natural” control order (note that other
orders of ec(bS) as say, (RO, a%, R3!, R1?) are infeasible).

To activate ec(b5) one has to provide an input array whose
dimension is equal to or greater than 3 and whose two first
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entries, at least, are initially ordered. Clearly, 1) R3! and RO!
require that 53 has not been executed when control reaches
b5, which is equivalent to stating that a[0:R1] be initially
ordered and 2) R1% and a” require that the outer loop be
executed at least twice which means that a has to contain at
least three elements, or N = 2.

In such a case during the second execution of the outer loop,
when ec(b5) is activated (i.e., control reaches b5), there is
R3=0, R1=1, and RO=4a(R1). Next the swapping routine
copies a(R1) into a(R3), overwriting the initial value of a(0).
It should be observed that the associated operation of assigning
RO to a(R1) does not result in error because RO =a(R1).
Thus any testing path which activates ec(b5) is error-sensitive.
However, if initially @(0)=a(1) then the error will not show
up because error revealing is guaranteed for no structural
testing of the program unless supplemented by another data
selection criterion. For example, the error will be detected
for any distinct entries of a[0:N] which lead to activation of
ec(b5).

To illustrate this suppose that N =2 and the initial value of
a is (8, 7, 2). During the second traversal of the outer loop b5
is entered with R3=0, R1 =1 and exited with R1 =2 and
new value of = (7, 7, 2). The latter wll show up as an error
on termination of the program.

However, it should be noted that if the missing reinitializa-
tion R3:=R1 were present in the program, the context
ec(b5) = (R3', a2, R1%2, RO') would not have been feasible
because R3' would have been overwritten by the assignment
R3:=R1.

VI. RELIABILITY OF THE APPROACH

Although it has been shown that data flow testing proved
more powerful than its control oriented counterparts when
applied to two sample programs, it would be premature to
claim its superiority. A thorough study is needed to arrive at
sound conclusions about the strengths and weaknesses of the
approach. Such an analysis should take into account 1) the
potential ability of the method to detect errors of certain
kind and its failure to detect other errors and 2) the complex-
ity of the method measured by the number of tests required.

None of those questions seems to be well-defined in the
absence of a language independent model of errors and the
way they affect the observable behaviour of computer pro-
grams. The known works in this direction [16], [22], although
providing a deeper insight into the causes of errors at different
stages of program development (specification, design, coding,
verification) do not provide a general language independent
framework in which different types of errors could be defined
and their propagation studied. An attempt to arrive at such a
framework has been recently undertaken [8] on the basis of
a program model developed in [20] and although it calls for a
further refinement we will use the classification of errors put
forward there in the following short informal discussion of
data flow testing reliability.

Programming errors and their impact on the operational
behavior of the program should be studied with respect to a
given level of program decomposition. As far as “pure testing”
is concerned, when debugging is the objective of a separate
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stage of the program development process, it is the highest,
whole-program level that is of interest. At that level the pro-
gram is viewed as a black box that transforms input data
into output data.

Correctness of the transformation is assessed on the basis of
a specification of the program that, whether formal or infor-
mal, serves as the ultimate “test oracle.” Assuming that the
specification determines the total correctness of the program,
incorrectness of the program is manifested either as nonterm-
ination or as incorrect results of an otherwise terminating
program.

Therefore, nontermination or incorrect results are the only
observable, run-time effects of any static, textual error that
affects the program text. To be able to ask which textual
errors can be revealed by a particular testing strategy, a pro-
gram decomposition level more detailed than the black-box
model is required. To this point we assume that the program
can be represented as a system of interconnected modules
with explicitly defined data and control flows (cf. [20]).
This gives rise to the classification of textual errors as either
transformation or control errors. Transformation errors
account for incorrect transformations of data by the modules
involved while control errors account for incorrect control
decisions and missing path cases.

It should be noted, however, that the above classification is
to be considered with respect to a given level of program
decomposition. A transformation error, for example, can be
caused by a number of transformation and/or control errors
at a lower level of decomposition. As a rule both transforma-
tion and control static errors at a given level manifest them-
selves at the higher levels either as a transformation error or as
nontermination of a higher level module.

Which of the above classes of errors can be detected by data
flow testing? Let us first make clear that no structural testing
strategy will guarantee ultimate detection of an error if the pro-
gram being tested does not contain an error-revealing path.
For example, an error is guaranteed to show up for a single-
path program (a sequence of instructions) only if the program
works incorrectly for all inputs. Clearly, the single path of
such a program is error-sensitive but test data which reveal
the error must be chosen on other than structural grounds.
Therefore, for an arbitrary program, no structural oriented
testing is reliable and the power of a structural testing strategy
should be formulated in terms of its viability rather than its
reliability.

Consider now a transformation error in a block which results
in incorrect values of some of the block output variables; the
corresponding block-level definitions of those variables (repre-
senting the cumulative effect of all assignments to them with-
in the block) will be referred to as the incorrect definitions.
Data flow testing requires that every instruction which uses
those definitions be activated at least once for every possible
combination of the incorrect definitions and the other defini-
tions used by that instruction. Therefore, an error-sensitive
path will ultimately be traversed because all possible uses of
the incorrect definitions will be exhausted.

If a definition can be returned as the final (output) value of
the variable involved, i.e., when there is a definition-clear path
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from the definition to the program end, then the corresponding
stop (exit, return) instruction can be thought of as using the
definition. Consequently, data flow testing will require that
the definition-clear path be exercised. For example, in the
following binary search program computing the integer square
root of a natural n [21]:

integer function sqrt (»)
begin integern, I/, n, ¢

:=0;
u:=mn;
init: ¢ :=(Hu)/2; [* e */
more: if t*t>n thenu :=telse ! :=¢ fi;
if (t=(l+u)/2) then
i return (¢) [* DCG) = [, t2]*/
else t := (I+u)/2 fi, [* t* */
goto more;
end sqrt

there is an error in instruction init which shows up only for
n=1. No control testing (except for path testing) guarantees
detection of the error, but data flow testing requires that
definition #' of DC(i) be activated, which can be accomplished
only if n=1.

A typical case of a transformation error is a missing assign-
ment to a variable. One might assume that such an error
cannot be reliably detected because of the missing definition-use
chains which would have appeared in the absence of the error.
A closer analysis, however, shows that this is not always the
case. Clearly, a missing assignment in a block gives rise to
definition-use chains which would not have existed had the
assignment been present. Those chains are error sensitive
when the error does not affect functionality of the block,
i.e., when there is another assignment to the variable involved
within the block (by the functionality we mean the input and
output variables of a block).

A transformation error may, however, affect the functional-
ity of a block and then some new error-generated contexts
may not be error sensitive. This is the case of our sorting

" program. Suppose that instruction R3:=RI1 is present in
the latter; then the correct intended data context of block
b5 is the following:

DC(b5) = [(a', RO, R3™ R1'), (a*, RO', R32,R1Y),
(a®,RO!, R3™ R1?), (a2, R0*,R32, R1?)]

when R3™ denotes the “missing” definition of R3. Note the
definition R3! does not appear in the above.

When R3™ is missing those elementary contexts which con-
tain R3™ disappear and are replaced by new contexts that
otherwise would have been infeasible:

(@*,R0', R3' R1')),(a%,RO',R3% R1?),
(@®,R0',R3' R1?).

Although all of the above are incorrect contexts, only the last
two are viable, i.e., only their activation leads to execution of
error-sensitive paths. The first context (a', RO', R3!, R1%)
is not viable because R3 = R1 when it is activated.

Similar reasoning can be applied to the control error case; it .

seems that data flow testing is not viable for control errors
unless certain conditions are met. For example, if in the
instruction if x <y then P1 else P2 the predicate x <y is mis-
spelled as x <y, then one cannot expect that data flow testing
will cause execution of P2 for x =y unless some data contexts
that appear in P1 or P2 will require that.

A missing path fault also seems to not be easily caught by
data flow testing unless some unusual conditions occur. For
example, if a missing path causes the lack of initialization of
a variable then that data-flow anomaly will be detected by
the method.

A general conclusion that might be drawn from the above
discussion is that data flow testing is viable for transformation
faults, but it is not viable for control errors. The latter draw-
back is, however, typical for control oriented strategies, too.
Clearly, a missing path cannot be exercised by a control strategy
nor can the latter guarantee detection of a subtle incorrect
decision error as, for example, the misspelling error discussed
above. A misspelling error, however, that swaps two branches
in a decision statement (e.g., x <y written as x >y) will be
detected by either branch testing or by data flow testing.

VII. CONCLUSIONS

The proposed method of program testing involves data
flow analysis in the program as its prerequisite. There exists
a number of algorithms for the data flow analysis problems
that emerge in compiler design [7], [9]-[15]. In most cases
they focus on code optimization involving, for example, re-
moval of useless code from the object program or sharing some
machine memory locations among different variables. Although
they are not directly applicable to the data flow testing
strategies, it seems that they might readily be adapted for that
purpose. For example, the live-dead analysis aiming towards
determination of the live definitions that can reach an instruc-
tion [11] can be extended to generate paths along which those
definitions are preserved. ‘

Such testing oriented data flow analysis could be a part of a
sophisticated debugger. Its output would then be the set of
paths which should be tested according to the chosen data
flow oriented strategy. Some optimization could also be
carried out to arrive at a minimal set of control paths which
cover all the testing paths for a given strategy. This task
might be fully automated, although it would be a programmer’s
responsibility to provide input test cases that cause those paths
to be executed.

In summary, the data flow strategy offers a new approach to
testing whose full potential, however, has yet to be explored.
Some interesting issues that seem worthwhile for further study
are the following:

1) The use of a hierarchical, data oriented program decom-
position for testing purposes. Such an approach would enable
one to reveal some hypothetical subfunctions that contribute
to the overall program design. In this respect, data oriented
testing would have some flavor of specification-driven, func-
tional testing (cf. [19]).

2) Comparative analysis with the control oriented approach,
particularly with branch testing. To this point one can say

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 1, 2009 at 20:27 from IEEE Xplore. Restrictions apply.



354

that data flow testing provides a finer test completeness
measure than branch testing while avoiding the path explosion
problem typical for path testing. Loops are exercised until
the existing definition-use chains are exhausted and though,
unlike in the control oriented structural testing, no finite
limit on loop iterations appear, the actual number of iterations
is always finite, owing to the finite number of chains to be
tested.

3) Methods for combining data flow with functional specifi-
cation-driven testing to enhance viability of the approach.

Let us stress again, however, that correct solutions to those
problems should be formulated in terms of a sound, language
independent model of programming errors in which their
effect on program behavior could be studied.
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